• 中国中文核心期刊
  • 中国科学引文数据库(CSCD)核心库来源期刊
  • 中国科技论文统计源期刊(CJCR)
  • 第二届国家期刊奖提名奖
Volume 36 Issue 5
Oct.  2023
Article Contents
Turn off MathJax

Citation:

Response of Radial Growth of Different Provenances to Climate Change: A Review

  • Corresponding author: DUAN Ai-guo, duanag@caf.ac.cn
  • Received Date: 2022-11-23
    Accepted Date: 2023-04-23
  • Geographical variation of tree species population is the basis of tree selection and breeding. It is of great significance to study the climate sensitivity of radial growth of different provenances for seed allocation and selection of superior provenances. This paper reviews the long-term and short-term responses of radial growth of different provenances to climate change, suggesting that the response characteristics to climate change vary among different provenances. The response of radial growth of different provenances to climate change can be used to guide provenance selection in the future climate. However, there is still a lack of research on the response of different provenances to climate change, and the response of provenance growth to climate change needs to be further studied. Using the method of dendroclimatology to explore the response of radial growth of different provenances to climate change can effectively promote forest cultivation management and guide the selection of productive and adaptable seed sources for reforestation.
  • 加载中
  • [1]

    ZENG X, EVANS M N, LIU X,et al. Spatial patterns of precipitation-induced moisture availability and their effects on the divergence of conifer stem growth in the western and eastern parts of China’s semi-arid region[J]. Forest Ecology and Management, 2019, 451: 117524. doi: 10.1016/j.foreco.2019.117524
    [2]

    HUANG Y, DENG X, ZHAO Z,et al. Monthly radial growth model of Chinese fir (Cunninghamia lanceolata (Lamb. ) Hook. ), and the relationships between radial increment and climate factors[J]. Forests, 2019, 10(9): 757. doi: 10.3390/f10090757
    [3]

    CHHIN S, ZALESNY R S, PARKER W C,et al. Dendroclimatic analysis of white pine (Pinus strobus L. ) using long-term provenance test sites across eastern North America[J]. Forest Ecosystems, 2018, 5(1): 18. doi: 10.1186/s40663-018-0136-0
    [4]

    JIAO L, JIANG Y, ZHANG W,et al. Assessing the stability of radial growth responses to climate change by two dominant conifer trees species in the Tianshan Mountains, northwest China[J]. Forest Ecology and Management, 2019, 433: 667-677. doi: 10.1016/j.foreco.2018.11.046
    [5]

    ZHANG Y, CAO R, YIN J,et al. Radial growth response of major conifers to climate change on Haba Snow Mountain, Southwestern China[J]. Dendrochronologia, 2020, 60: 125682. doi: 10.1016/j.dendro.2020.125682
    [6]

    ZHAO Y, DENG X, XIANG W,et al. Predicting potential suitable habitats of Chinese fir under current and future climatic scenarios based on Maxent model[J]. Ecological Informatics, 2021, 64: 101393. doi: 10.1016/j.ecoinf.2021.101393
    [7]

    THOMSON A M, PARKER W H. Boreal forest provenance tests used to predict optimal growth and response to climate change. 1. Jack pine[J]. Canadian Journal of Forest Research, 2008, 38(1): 157-170. doi: 10.1139/X07-122
    [8]

    JIAO L, JIANG Y, WANG M,et al. Responses to climate change in radial growth of Picea schrenkiana along elevations of the eastern Tianshan Mountains, northwest China[J]. Dendrochronologia, 2016, 40: 117-127. doi: 10.1016/j.dendro.2016.09.002
    [9]

    MIHAI G, BîRSAN M-V, DUMITRESCU A,et al. Adaptive genetic potential of European silver fir in Romania in the context of climate change[J]. Annals of Forest Research, 2018, 61(1): 95-108.
    [10]

    FKIRI S, GUIBAL F, FADY B,et al. Tree-rings to climate relationships in nineteen provenances of four black pines sub-species (Pinus nigra Arn. ) growing in a common garden from Northwest Tunisia[J]. Dendrochronologia, 2018, 50: 44-51. doi: 10.1016/j.dendro.2018.05.001
    [11]

    VERKERK P J, COSTANZA R, HETEMäKI L,et al. Climate-Smart Forestry: the missing link[J]. Forest Policy and Economics, 2020, 115: 102164. doi: 10.1016/j.forpol.2020.102164
    [12] 国家林业局. 应对气候变化林业行动计划 [M]. 北京: 中国林业出版社, 2010.

    [13]

    SAVVA Y V, SCHWEINGRUBER F H, VAGANOV E A,et al. Influence of climate changes on tree-ring characteristics of Scots Pine provenances in southern siberia (forest-steppe)[J]. IAWA Journal, 2003, 24(4): 371-383. doi: 10.1163/22941932-90000342
    [14]

    FRITTS H. Tree rings and climate [M]. Elsevier, 2012.
    [15]

    CHEN P Y, WELSH C, HAMANN A. Geographic variation in growth response of Douglas-fir to interannual climate variability and projected climate change[J]. Global Change Biology, 2010, 16(12): 3374-3385. doi: 10.1111/j.1365-2486.2010.02166.x
    [16]

    SAVVA Y, BERGERON Y, DENNELER B,et al. Effect of interannual climate variations on radial growth of jack pine provenances in Petawawa, Ontario[J]. Canadian Journal of Forest Research, 2008, 38(3): 619-630. doi: 10.1139/X07-178
    [17] 王明庥. 林木遗传育种学 [M]. 北京: 中国林业出版社, 2001.

    [18] 徐化成, 冯 林. 种源、种源试验和种源区[J]. 林业科技通讯, 1978(4):22-24. doi: 10.13456/j.cnki.lykt.1978.04.018

    [19] 洪菊生, 陈伯望, 吴士侠. 杉木造林优良种源选择[J]. 林业科学研究, 1994, 7(S1):1-25.

    [20]

    NABAIS C, HANSEN J K, DAVID-SCHWARTZ R,et al. The effect of climate on wood density: What provenance trials tell us?[J]. Forest Ecology and Management, 2018, 408: 148-156. doi: 10.1016/j.foreco.2017.10.040
    [21]

    MATISONS R, ADAMOVIčS A, JANSONE D,et al. Climatic sensitivity of the top-performing provenances of Scots pine in Latvia[J]. Baltic Forestry, 2018, 24(2): 228-233.
    [22]

    SCHABERG P G, MURAKAMI P F, COLLINS K M,et al. Phenology, cold injury and growth of American chestnut in a range-wide provenance test[J]. Forest Ecology and Management, 2022, 513: 120178. doi: 10.1016/j.foreco.2022.120178
    [23]

    EILMANN B, DE VRIES S M G, DEN OUDEN J,et al. Origin matters! Difference in drought tolerance and productivity of coastal Douglas-fir (Pseudotsuga menziesii (Mirb. )) provenances[J]. Forest Ecology and Management, 2013, 302: 133-143. doi: 10.1016/j.foreco.2013.03.031
    [24]

    SUVANTO S, NöJD P, HENTTONEN H M,et al. Geographical patterns in the radial growth response of Norway spruce provenances to climatic variation[J]. Agricultural and Forest Meteorology, 2016, 222: 10-20. doi: 10.1016/j.agrformet.2016.03.003
    [25]

    WANG H, ZHU A, DUAN A,et al. Responses to subtropical climate in radial growth and wood density of Chinese fir provenances, southern China[J]. Forest Ecology and Management, 2022, 521: 120428. doi: 10.1016/j.foreco.2022.120428
    [26]

    ZHANG Z, JIN G, FENG Z,et al. Joint influence of genetic origin and climate on the growth of Masson pine (Pinus massoniana Lamb. ) in China[J]. Scientific Reports, 2020, 10(1): 4653. doi: 10.1038/s41598-020-61597-9
    [27]

    HEVIA A, CAMPELO F, CHAMBEL R,et al. Which matters more for wood traits in Pinus halepensis Mill., provenance or climate?[J]. Annals of Forest Science, 2020, 77(2): 1-24.
    [28]

    MATISONS R, SCHNECK V, JANSONE D,et al. South-eastern Baltic provenances of Scots pine show heritable weather-growth relationships[J]. Forests, 2021, 12(8): 1101. doi: 10.3390/f12081101
    [29]

    SZYMAŃSKI N, WILCZYŃSKI S. Radial growth response of European Larch provenances to interannual climate variation in Poland[J]. Forests, 2021, 12(3): 334. doi: 10.3390/f12030334
    [30]

    ZHANG H, ZHANG S, SONG W,et al. Climate response of radial growth and early selection of Larix olgensis at four trials in northeast China[J]. Dendrochronologia, 2022, 73: 125955. doi: 10.1016/j.dendro.2022.125955
    [31]

    SCHMIDTLING R. Use of provenance tests to predict response to climatic change: loblolly pine and Norway spruce[J]. Tree physiology, 1994, 14(7-8-9): 805-817. doi: 10.1093/treephys/14.7-8-9.805
    [32]

    MÁTYÁS C. Modeling climate change effects with provenance test data[J]. Tree physiology, 1994, 14(7-8-9): 797-804. doi: 10.1093/treephys/14.7-8-9.797
    [33]

    ANDALO C, BEAULIEU J, BOUSQUET J. The impact of climate change on growth of local white spruce populations in Québec, Canada[J]. Forest Ecology and Management, 2005, 205(1-3): 169-182. doi: 10.1016/j.foreco.2004.10.045
    [34]

    KAPELLER S, LEXER M J, GEBUREK T,et al. Intraspecific variation in climate response of Norway spruce in the eastern Alpine range: Selecting appropriate provenances for future climate[J]. Forest Ecology and Management, 2012, 271: 46-57. doi: 10.1016/j.foreco.2012.01.039
    [35]

    WANG T, O'NEILL G, AITKEN S. Integrating environmental and genetic effects to predict responses of tree populations to climate[J]. Ecological applications, 2010, 20: 153-163. doi: 10.1890/08-2257.1
    [36]

    WANG T, HAMANN A, YANCHUK A,et al. Use of response functions in selecting lodgepole pine populations for future climates[J]. Global Change Biology, 2006, 12(12): 2404-2416. doi: 10.1111/j.1365-2486.2006.01271.x
    [37]

    AITKEN S N, YEAMAN S, HOLLIDAY J A,et al. Adaptation, migration or extirpation: climate change outcomes for tree populations[J]. Evolutionary Applications, 2008, 1(1): 95-111. doi: 10.1111/j.1752-4571.2007.00013.x
    [38]

    MASSON-DELMOTTE V, ZHAI P, PIRANI A, et al. IPCC, 2021: Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change [C]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2021: 2391.
    [39]

    KLISZ M, BURAS A, SASS-KLAASSEN U,et al. Limitations at the limit? Diminishing of genetic effects in Norway spruce provenance trials[J]. Frontiers in Plant Science, 2019, 10: 306. doi: 10.3389/fpls.2019.00306
    [40]

    DESOTO L, CAILLERET M, STERCK F,et al. Low growth resilience to drought is related to future mortality risk in trees[J]. Nature Communications, 2020, 11(1): 545. doi: 10.1038/s41467-020-14300-5
    [41]

    BUDEANU M, APOSTOL E N, BESLIU E,et al. Phenotypic variability and differences in the drought response of Norway spruce Pendula and Pyramidalis half-sib families[J]. Forests, 2021, 12(7): 947. doi: 10.3390/f12070947
    [42]

    SCHWEINGRUBER F H, ECKSTEIN D, SERRE-BACHET F,et al. Identification, presentation and interpretation of event years and pointer years in dendrochronology[J]. Dendrochronologia, 1990, 8: 9-38.
    [43]

    CROPPER J P. Tree-ring skeleton plotting by computer[J]. Tree-Ring Bulletin, 1979, 39: 47-60.
    [44]

    NEUWIRTH B, SCHWEINGRUBER F H, WINIGER M. Spatial patterns of central European pointer years from 1901 to 1971[J]. Dendrochronologia, 2007, 24(2-3): 79-89. doi: 10.1016/j.dendro.2006.05.004
    [45]

    JETSCHKE G, MAATEN E V D, MAATEN-THEUNISSEN M V D. Towards the extremes: A critical analysis of pointer year detection methods[J]. Dendrochronologia, 2019, 53: 55-62. doi: 10.1016/j.dendro.2018.11.004
    [46]

    LIORET F, KEELING E G, SALA A. Components of tree resilience: effects of successive low-growth episodes in old ponderosa pine forests[J]. Oikos, 2011, 120(12): 1909-1920. doi: 10.1111/j.1600-0706.2011.19372.x
    [47]

    THURM E A, UHL E, PRETZSCH H. Mixture reduces climate sensitivity of Douglas-fir stem growth[J]. Forest Ecology and Management, 2016, 376: 205-220. doi: 10.1016/j.foreco.2016.06.020
    [48]

    SCHWARZ J, SKIADARESIS G, KOHLER M,et al. Quantifying growth responses of trees to drought—a critique of commonly used resilience indices and recommendations for future studies[J]. Current Forestry Reports, 2020, 6(3): 185-200. doi: 10.1007/s40725-020-00119-2
    [49]

    EILMANN B, STERCK F, WEGNER L,et al. Wood structural differences between northern and southern beech provenances growing at a moderate site[J]. Tree Physiology, 2014, 34(8): 882-893. doi: 10.1093/treephys/tpu069
    [50]

    HOUSSET J M, NADEAU S, ISABEL N,et al. Tree rings provide a new class of phenotypes for genetic associations that foster insights into adaptation of conifers to climate change[J]. New Phytologist, 2018, 218(2): 630-645. doi: 10.1111/nph.14968
    [51]

    MONTWE D, ISAAC-RENTON M, HAMANN A,et al. Cold adaptation recorded in tree rings highlights risks associated with climate change and assisted migration[J]. Nature Communications, 2018, 9(1): 1574. doi: 10.1038/s41467-018-04039-5
    [52]

    PRÍNCIPE A, VAN DER MAATEN E, VAN DER MAATEN-THEUNISSEN M,et al. Low resistance but high resilience in growth of a major deciduous forest tree (Fagus sylvatica L. ) in response to late spring frost in southern Germany[J]. Trees, 2016, 31(2): 743-751.
    [53]

    KLISZ M, UKALSKA J, KOPROWSKI M,et al. Effect of provenance and climate on intra-annual density fluctuations of Norway spruce Picea abies (L. ) Karst. in Poland[J]. Agricultural and Forest Meteorology, 2019, 269-270: 145-156. doi: 10.1016/j.agrformet.2019.02.013
    [54]

    MIHAI G, TEODOSIU M, BIRSAN M-V,et al. Impact of climate change and adaptive genetic potential of Norway spruce at the south–eastern range of species distribution[J]. Agricultural and Forest Meteorology, 2020, 291: 108040. doi: 10.1016/j.agrformet.2020.108040
    [55]

    ISAAC-RENTON M G, ROBERTS D R, HAMANN A,et al. Douglas-fir plantations in Europe: a retrospective test of assisted migration to address climate change[J]. Global Change Biology, 2014, 20(8): 2607-2617. doi: 10.1111/gcb.12604
    [56]

    JANSEN K, SOHRT J, KOHNLE U,et al. Tree ring isotopic composition, radial increment and height growth reveal provenance-specific reactions of Douglas-fir towards environmental parameters[J]. Trees, 2012, 27(1): 37-52.
    [57]

    GRIESBAUER H P, KLASSEN H, SAUNDERS S C,et al. Variation in climate-growth relationships for Douglas-fir growth across spatial and temporal scales on southern Vancouver Island, British Columbia[J]. Forest Ecology and Management, 2019, 444: 30-41. doi: 10.1016/j.foreco.2019.04.014
    [58]

    REED C C, BALLANTYNE A P, COOPER L A,et al. Limited evidence for CO2 -related growth enhancement in northern Rocky Mountain lodgepole pine populations across climate gradients[J]. Global Change Biology, 2018, 24(9): 3922-3937. doi: 10.1111/gcb.14165
    [59]

    MATISONS R, JANSONE D, ELFERTS D,et al. fiPlasticity of response of tree-ring width of Scots pine provenances to weather extremes in Latvia[J]. Dendrochronologia, 2019, 54: 1-10. doi: 10.1016/j.dendro.2019.01.002
    [60]

    REZAIE N, D'ANDREA E, BRAUNING A,et al. Do atmospheric CO2 concentration increase, climate and forest management affect iWUE of common beech? Evidences from carbon isotope analyses in tree rings[J]. Tree Physiology, 2018, 38(8): 1110-1126. doi: 10.1093/treephys/tpy025
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article views(2724) PDF downloads(156) Cited by()

Proportional views

Response of Radial Growth of Different Provenances to Climate Change: A Review

    Corresponding author: DUAN Ai-guo, duanag@caf.ac.cn
  • 1. State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
  • 2. Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu, China

Abstract: Geographical variation of tree species population is the basis of tree selection and breeding. It is of great significance to study the climate sensitivity of radial growth of different provenances for seed allocation and selection of superior provenances. This paper reviews the long-term and short-term responses of radial growth of different provenances to climate change, suggesting that the response characteristics to climate change vary among different provenances. The response of radial growth of different provenances to climate change can be used to guide provenance selection in the future climate. However, there is still a lack of research on the response of different provenances to climate change, and the response of provenance growth to climate change needs to be further studied. Using the method of dendroclimatology to explore the response of radial growth of different provenances to climate change can effectively promote forest cultivation management and guide the selection of productive and adaptable seed sources for reforestation.

  • 作为全球陆地生态系统的重要组成部分[1-2],森林不仅为人类提供了丰富的资源,也在减缓气候变暖和保护生态环境方面发挥着不可替代的作用[1]。气候变化背景下,树木的生长、发育和分布范围[3-6],以及森林结构、功能和生产力等正在发生变化[7-9]。森林生态系统如何更好地适应气候变化是当前森林培育面临的一个重大问题[10]。未来需要将缓解与适应措施联系起来,以增强森林资源的弹性[11]。2008年在瑞典召开的气候变化国际会议明确指出,选择在未来气候条件下生长更快的树种和种源造林是计划适应气候变化的有效森林培育措施之一[12]

    树轮气候学方法的成熟为种源异境生长过程中对气候变化的长期响应提供了可靠工具。树木生长受自身遗传因素及多种环境因子(包括土壤性质、降水、温度、太阳辐射和人为干扰等)的直接或间接调控[13],并通过年轮性状来记录和表达[14]。利用树木年轮学方法研究树木种源,可以比较同一环境下种植的不同种群对气候因子的长期响应差异,描述不同种源对环境条件的遗传适应性[3, 15],并预测未来气候变化对树木生长的潜在影响[16]

    国内外少有的种源响应气候变化的研究已表明,树木不同地理种源对气候变化具有不同的响应特征,利用种源试验林可预测未来气候变化对地理种源的影响程度,并指导适应未来气候变化的种源选择。然而,国内有关同一树种不同种源对气候变化的响应研究仍十分缺乏,树木种源生长对气候变化的响应研究亟待进一步深入开展。本文综述了不同种源树木年轮径向生长与气候因子的关系,对树木种源径向生长对气候的长期响应、及其对极端气候的短期响应研究现状作简要评述,旨在揭示不同树木种源径向生长对气候的响应特征,强调气候变化背景下种源选择的重要性,以期为相关科研工作提供参考。

    • 种源(地理种源),指的是种子的地理起源。树种内种源间一般都存在较大的遗传变异[17],这是树种在其广泛分布区内生态环境多样性长期选择的结果。由于种源群体基因平衡稳定,选种周期短、成本低、增产效果显著,种源试验被视为各国树种遗传改良最常用的方法之一。国外种源试验和选种始于18世纪中期,法国于1823—1850年进行了首次种源试验[18],之后欧洲各国在国际林联(IUFRO)组织下,建立了云杉、欧洲松及落叶松等树种的种源试验。目前世界上30多个国家从事着种源试验,涉及100多个造林树种。国内种源试验始于20世纪50年代中期,70年代中期进入有组织的系统研究,80年代全面展开[19]。近年来,热带和亚热带地区的地理种源试验也相继开展起来。种源试验研究内容,也从最初的种源田间生长及适应性选择,发展到包括生长、适应性、材性及抗性等综合评定,种源与环境互作效应,种源性状遗传参数计算,种群的遗传结构,以及种源分子遗传学测定和生理生化特性等。

    2.   树木种源径向生长对气候变化的长期响应
    • 近年来,种源试验已成为研究树木响应气候变化的有力工具[20]。从研究材料看,利用种源试验开展树木不同种源对气候变化的长期响应研究目前主要有3种途径:一是采用多种源单测试点的径向生长数据建立与测试点多年气候因子间的关系;二是采用多种源多测试点径向生长数据建立与多测试点多年气候因子间的关系;三是采用多种源多测试点径向生长数据建立其与多测试点多年气候因子均值间的关系。相关研究主要集中于前两种途径,第三种途径比较少见。

    • 从种源水平树木径向生长与气候因子关系及适应性研究论,同一树种不同种源表现出的气候响应特征存在差异,且这种差异性随树种的不同而异。Savva等[13]的研究表明,影响樟子松(Pinus sylvestris L.)年轮性状的气候因素在不同种源间差异不大,所有种源径向生长均与4月平均气温高度正相关。而Matisons等[21]发现樟子松种源径向生长与7月降水量和前一年7月标准化降水蒸散指数(SPEI)显著正相关,表现较好的种源相关性更强。Savva等[16]比较了年际气候变化对不同地理种源的短叶松(Pinus banksiana Lamb.)径向生长的影响,发现径向生长的最佳气候预测因子是当年3月、6月和前一年12月的降水,影响种源生长的气候因子相似。Chen等[15]发现,对于沿海道格拉斯冷杉,年轮生长与前一年冬季温度和夏季降水量正相关;但对于内陆种源而言,降水量少及较高的生长季温度则限制了其生长。Schaberg等[22]研究了美洲板栗种源(Castanea dentata (Marsh.) Borkh.)的物候、冷损伤和径向生长模式,结果表明不同种源间径向生长差异较小,更高的水分可获得性与更大的生长有关。

      然而,Eilmann等[23]的研究表明,道格拉斯冷杉(Pseudotsuga menziesii (Mirb.) Franco)种源晚材形成受到夏季干旱的强烈制约,其与8月降水量正相关,与7、8月气温负相关,且这一关系在种源之间差异明显;来自华盛顿南部的种源对夏季降水和温度最敏感,而来自北部海岸的种源则受夏季干旱影响最小。Suvanto等[24]也发现挪威云杉(Picea abies (L.) Karst)径向生长与冬、春季温度的相关性在种源间差异明显,南方种源较高的生长与暖冬有关,而暖冬对北方种源生长产生了负面影响。Wang等[25]发现12月和1月温度促进亚热带地区杉木(Cunninghamia lanceolata (Lamb.) Hook.)种源径向生长,而7—9月高温抑制其生长,同时不同种源对试验点气候的响应具有明显差异。

    • 从不同种源试验点角度来看,树木种源生长与气候因子的关系表现出与种源迁移的测试点所在气候区有关。Zhang等[26]发现在淳安试验点,马尾松(Pinus massoniana Lamb.)种源径向生长与8月平均温显著负相关,而在太子山试验点,也与6月平均温负相关,与5月降水量显著正相关。Hevia等[27]发现地中海松(Pinus halepensis Mill.)的大多数种源径向生长积极响应冬春季降水,更宽的年轮往往在具有多雨的冬季和温暖的春天的有利年份形成。Matisons等[28]评估了遗传控制对气候条件敏感性的作用强度,发现樟子松气候与生长关系的强度因种源而异,且径向生长对影响夏季降水以及前一年冬季和夏末的水分条件的敏感性具有最高的遗传力。Szymański等[29]发现气候因子和遗传因子共同调节欧洲落叶松(Larix deciduaMill)种源的生长与气候关系,在低地试点,欧洲落叶松种源对前一年11—12月、当年7月温度和9月降水的响应不同;在高地试点,其种源对前一年10月和6—9月降水的敏感性具有较大差异;在山地气候下,其种源则对前一年9月温度和降水,以及当年2、6、9月的降水具有明显不同的响应模式。Zhang等[30]对长白落叶松(Larix olgensisA. Henry)径向生长-气候关系的研究表明,落叶松种源对不同试验点的温度和降水响应也不同。在黑龙江省半干旱地区,径向生长与当年8月气温(正相关)、前一年5月气温(负相关)、11月气温(正相关)、前一年12月降水量(正相关)相关显著。当年6月的气温(负)和降水(正)是影响大兴安岭东南坡长白落叶松径向生长的重要因素。小兴安岭东南坡当年7月气温与落叶松种源生长呈负相关,而张广才山西坡径向生长与气候因子相关性不显著。

    • 从气候变化下种源选择的依据方面,树木径向生长与气候变量的数量化关系主要通过构建响应函数或转移函数来实现。影响种源在特定位置表现差异的一个主要因素是种植地和种源原产地间的气候差异,因此种源试验常被用来确定种源迁移到不同气候下的遗传反应[31]。通过建立一般的转移模型,将种源相对生长表现与种源原产地和种植点之间的生态距离联系起来[32],从而能够评估给定种源对种植点气候的适应性[33]

      响应函数和转移函数常被用来描述树木生长特征对气候变化的响应[34]。响应函数描述了测试点气候对单个种源生长表现的环境影响[35-36],而转移函数描述了树木种源生长的地理变异[37],取决于种植点和种源起源地之间的气候差异[34]。Thomson等[7]基于3月降水量和12月最低温构建的转移函数,发现冬季温度和春季降水量是樟子松种源表现的有效预测因子,同时响应函数与转移函数预估的结果一致,表明温度比降水量的预测作用更强。Andalo等[33]根据种源原产地和试验点之间的温度和降水差异,建立了预测白云杉(Picea glauca (Moench) Voss)种源径向生长的转移函数模型,发现当温度转移距离为零时,获得最佳生长。Mihai等[9]发现欧洲银杉(Abies alba)种源生长受试验地年均温和年降水量,以及种源地和试验地年均温、年降水量和7月平均温产生的生态距离的显著影响。

    3.   树木种源径向生长对气候变化的短期响应
    • 气候变化模型预测,全球广大地区干旱的频率、持续时间和严重程度将显著增加[38]。预测的气候变化和极端天气事件频率的增加可能会导致突然的大规模树木枯死[39-40]。由于大多数树木在其一生中都面临着几次干旱事件,因此对极端天气的适应能力可能决定着树木的长期生存[4, 34, 40]。因此,抗旱基因型或基因型群体的选择将是未来林木育种策略的重要考量[41]

    • 极端气候事件通常采用事件年和指针年来表征。事件年指单株水平上生长显著增加或减少的年份,指针年指林分水平上生长反应显著的年份[42]。为了识别事件年和指针年,已经开发了移动窗口中的归一化方法[43-44]、相对生长变化法[42]、站点年表的z变换法[45]、区间趋势法[42]等不同确定方法。在量化生态系统对干扰事件的反应的背景下,考虑到极端气候事件的影响,Lloret等[46]通过比较干扰前、干扰期间和干扰后的平均径向生长,提出了抵抗力、恢复力、(相对)弹性指数[46],来描述树木在极端事件前后的生长反应。近些年,Thurm等[47]提出了指数恢复期和总生长减少量,Schwarz等[48]又提出了平均生长减少量和平均恢复率指数。这些指标有助于分析极端气候事件干扰之前、期间和之后树木的生长反应。

    • 已有相关研究证明了种内遗传变异对极端气候事件的生长反应差异。例如,Eilmann等[23]发现道格拉斯冷杉北方种源生产力很高,如奥林匹克半岛种源的耐旱性最强,与夏季干旱的相关性较低,对干旱年的响应较低,在极端干旱年径向生长量下降后能较快恢复;而来自华盛顿州西南部沿海的种源结合了低生产力和低抗旱性,是研究中表现最差的种源。Eilmann等[49]随后发现在温和海洋气候条件下,欧洲山毛榉(Fagus sylvatica L.)种源内部存在强烈变异,有的个体对干旱年没有反应,而有的个体对干旱年有反应。此外,Housset等[50]发现,与金字塔型挪威云杉相比,钟摆型挪威云杉具有稍强的抗旱性和较低的恢复力。

    • 除极端干旱气候外,对极端低温等不利气候条件的敏感性也会降低树木的活力,从而降低树木生长的弹性[21]。通过年轮对过去气候如何影响生长的记录,树木年轮还可以为评估林木寒冷适应性提供额外的信息[51]。Príncipe等[52]的研究表明,霜冻事件可能极大地影响了欧洲山毛榉的生长,其生长减少与5月绝对最低气温相关,但其在极端晚霜事件后表现出低抗性、高弹性的径向生长。在突尼斯西北部湿润的地中海生物气候条件下,Fkiri等[10]对19个黑松种源指针年的分析表明,冬季降雪和冰雹是制约研究区黑松生长的主要因素。Suvanto等[24]采用指针年分析,表明挪威云杉南方种源只有在异常寒冷的冬季才会出现生长下降,如1956、1966和1985年冬季气温最低的三年,南方种源在几个试验点都表现出生长下降,而北方种源没有受到影响。

    4.   研究结论与展望
    • 国际上基于种源试验林的不同树木种源径向生长对气候变化的响应研究在近十多年取得了较大的进展。近年来,越来越多的研究使用种源试验探索年际径向生长变化,并评估树木种源对气候-生长关系的影响,例如挪威云杉[24, 39, 41, 53-54]、道格拉斯冷杉[15, 23, 55-57]、不同的松树树种[3, 10, 21, 28, 58-59],以及广泛分布的欧洲山毛榉[49, 60]等。纵观国内外树木种源径向生长与气候因子关系的研究,可以发现不同种源径向生长对气候的响应具有一定的复杂性。树木种源生长对气候变化的差异性反应,将促进对气候变化背景下树种生长与分布响应评估,指导选择生产力高、适应性强的种源用于更新造林。目前有限的关于树木种源径向生长对气候的响应研究总体上还存在一些不足,主要表现在以下几个方面:

      (1)探讨树木种源径向生长-气候关系时,选择分析的种源的数量较少,远低于最初种源试验中涉及的种源数量。同时,进行长期响应分析时,常选用的气候因子是温度和降水,缺乏多个气候变量的综合分析,如相对湿度和干旱指数,模糊了径向生长气候响应的种源差异。同时,较多的单测试点种源生长对气候变化的响应,仅反映种源生长对试验点气候的响应情况,缺乏不同测试点相互迁移时树木种源对气候变化的响应结果解析,多种源多测试点种源生长对气候的响应亟待进一步开展。

      (2)树木种源生长对气候的响应受到遗传因素和环境因素的协同影响。同一树种不同种源在极端气候条件下表现出的抵抗力与恢复力具有差异。目前树木种源生长对极端气候变化的响应特征分析尚十分少见,已有研究缺乏极端气候事件发生的频率、强度、时间对种源生长影响的综合分析,这可能会影响种源气候适应性的深入揭示。

      (3)不同区域、不同树种的树木种源生长对气候变化的响应具有明显的差异性。未来需要基于长期种源试验,对不同树木种源展开广泛的树木年代学研究,利用树轮径向生长数据系统评估树木种源对气候变化的长期和短期响应,从而以年度分辨率对多个种源的生长-气候关系进行回顾性量化,详细评估不同树木种源径向生长对气候变化的响应,并在不同区域、不同气候类型下开展生理生态学研究,探索其生理机制。

Reference (60)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return