• 中国中文核心期刊
  • 中国科学引文数据库(CSCD)核心库来源期刊
  • 中国科技论文统计源期刊(CJCR)
  • 第二届国家期刊奖提名奖
Volume 36 Issue 5
Oct.  2023
Article Contents
Turn off MathJax

Citation:

Identification of the Pathogen Causing Leaf Spot of Cinnamomum camphora, Mycelial Growth Rate, and Its Fungicide Selection

  • Objective To Identify the pathogen causing leaf spot of Cinnamomum camphora in Wanzhou District, clarify the characteristics of mycelium growth, and select fungicides that effectively inhibit the pathogen for providing a theoretical basis for prevention and control of leaf spot disease. Method The pathogen was isolated and purified by the tissue separation method, and the pathogenicity was tested by Koch's method. Pathogens were identified based on morphological characteristics and multilogues phylogenetic analysis combined with ITS, tub2, GAPDH, and ApMat genes; The hyphae growth rate method was used to study the characteristics of mycelium growth, and the fungicides were selected. Result The isolated strains were grayish and the edge was white when the mycelium was cultured on PDA medium for 3 days. The orange conidiomata appeared in the late. The conidia were long oval, blunt round at both ends, transparent and colorless were independent cells. The measured spore size was (9.8~18.6) μm × (4.2~6.0) μm; Pathogenicity of strain ZT-1 was tested by two methods, both of which could cause the leaf spot disease of C. camphora leaves; The representative strains ZT-1 and ZT-5 clustered with Colletotrichum gloeosporioides, and the reliability was 100%; The optimum growth temperature of the pathogen was 28 ℃; The optimum pH value was 6.0; Potato Dextrose Agar medium was beneficial to mycelial growth; The optimum carbon and nitrogen sources were glucose and glycine; The optimum lighting condition was total darkness. Among the chemical and biological fungicides, 15% triadimefon WP and 1% osthol EW were highly toxic and the inhibition effect of C. gloeosporioides was obvious. Their EC50 values were less than 10 μg · mL−1. Conclusion C. gloeosporioides is the pathogen causing anthracnose on C. camphora in Wanzhou District and 15% triadimefon WP can be used as a fungicide for control.
  • 加载中
  • [1] 周际海, 程 坤, 郜茹茹, 等. 土壤镉污染对香樟幼苗光合和生理特性的影响[J]. 林业科学, 2020, 56(6):193-201.

    [2] 向 双, 孙维红, 万晓会, 等. 香樟及近缘种的亲缘关系分析[J]. 福建农林大学学报(自然科学版), 2022, 51(2):204-209. doi: 10.13323/j.cnki.j.fafu(nat.sci.).2022.02.008

    [3] 赵 姣. 芳樟枝叶精油含量与营养元素含量的动态变化及其相关性[J]. 林业科学, 2021, 57(12):57-67.

    [4] 王 进, 岳永德, 汤 锋, 等. 一种源于香樟精油的植物源杀蚜剂[P]. 中国专利. CN105613606A, 2016, 2016-03-23.

    [5] 段丹萍, 乔勇进, 鲁莉莎, 等. 香樟叶提取物对草莓灰霉病菌的抑制效果及保护酶活性的影响[J]. 湖北农业科学, 2011, 50(4):723-727. doi: 10.3969/j.issn.0439-8114.2011.04.023

    [6] 黄祚骅, 邹嘉伟, 周文娟, 等. 香樟叶提取物对植物病原菌的生物活性研究[J]. 林业勘察设计, 2021, 41(2):29-32.

    [7] 蔡建武. 香樟溃疡病流行规律与综防技术研究[J]. 中国农业信息, 2013(13):125-126.

    [8] 葛建明, 张 伟, 管丽琴, 等. 香樟炭疽病菌生物学特性及其植物源农药的筛选[J]. 上海交通大学学报(农业科学版), 2005, 23(4):401-405 + 442.

    [9] 徐明珠, 罗 欢, 周志雄, 等. 香樟叶斑病病原菌的分离与鉴定[J]. 中国森林病虫, 2017, 36(4):21-25 + 28.

    [10]

    WEIR B S, JOHNSTON P R, DAMM U. The Colletotrichum gloeosporioides species complex. Studies in Mycology[J], 2012, 73(1): 115-180.
    [11]

    CROUCH J A, CLARKE B B, WHITE J F,et al. Systematic analysis of the falcate-spored graminicolous Colletotrichum and a description of six new species from warm-season grasses[J]. Mycologia, 2009, 101(5): 717-732. doi: 10.3852/08-230
    [12]

    ROJAS E I, REHNER S A, SAMUELS G J,et al. Colletotrichum gloeosporioides s. l. associated with Theobroma cacao and other plants in Panamá: multilocus phylogenies distinguish host-associated pathogens from asymptomatic endophytes[J]. Mycologia, 2017, 102(6): 1318-1338.
    [13]

    SILVA D N, TALHINHAS P, VARZEA V,et al. Application of the Apn2/MAT locus to improve the systematics of the Colletotrichum gloeosporioides complex: an example from coffee (Coffea spp. ) hosts[J]. Mycologia, 2012, b,104(2): 396-409.
    [14]

    LIU F, WEIR B S, DAMM U,et al. Unravelling Colletotrichum species associated with Camellia: employing ApMat and GS loci to resolve species in the C. gloeosporioides complex[J]. Molecular Phylogeny and Evolution of Fungi, 2015, 35: 63-86. doi: 10.3767/003158515X687597
    [15]

    LIU F, MA Z Y, HOU L W,et al. Updating species diversity of Colletotrichum, with a phylogenomic overview[J]. Stud Mycol, 2012, 101(1): 1-56.
    [16]

    FU M, CROUS P W, BAI Q,et al. Colletotrichum species associated with anthracnose of Pyrus spp. in China[J]. Persoonia, 2019, 42: 1-35. doi: 10.3767/persoonia.2019.42.01
    [17] 方中达. 植病研究方法[M]. 第 3版. 北京: 中国农业出版社, 1998: 46-50.

    [18] 孙广宇, 宗兆锋. 植物病理学实验技术[M]. 北京: 中国农业出版社, 2002: 76-100.

    [19] White T, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics[J]. PCR Protocols, A Guide to Methods and Application, 1990, (1): 315-322. ??缺分类

    WHITE T, BRUNS T, LEE S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics[J]. PCR Protocols, A Guide to Methods and Application, 1990(1):315-322.
    [20]

    O'DONNELL K, CIGELNIK E. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous[J]. Molecular Phylogenetics & Evolution, 1997, 7(1): 103-116.
    [21]

    BERBEE M L, HUBBARD M P. Cochliobolus phylogenetics and the origin of known, highly virulent pathogens, inferred from ITS and glyceraldehyde-3-phosphate dehydrogenase gene sequences[J]. Mycologia, 1999, 91(6): 964-977. doi: 10.1080/00275514.1999.12061106
    [22] 殷 辉, 周建波, 吕 红, 等. 藜麦尾孢叶斑病的病原鉴定[J]. 植物病理学报, 2019, 49(3):408-414. doi: 10.13926/j.cnki.apps.000289

    [23] KENNEDY A H, SCHOCH C L, MARRERO G, et al. Publicly available and validated DNA reference sequences are critical to fungal identification and global plant protection efforts: a use-case in colletotrichum[J]. Plant Disease, 2022, 106(6): 1573-1596.

    [24]

    WANG Y C, HAO X , WANG L,et al. Diverse Colletotrichum species cause anthracnose of tea plants (Camellia sinensis (L.) O. Kuntze) in China[J]. Scientific reports, 2016, 6: 35287. doi: 10.1038/srep35287
    [25]

    PRIHASTUTI H, CAI L, CHEN H,et al. Characterization of Colletotrichum species associated with coffee berries in northern Thailand[J]. Fungal Diversity, 2009(39): 89-109.
    [26]

    SHARMA G, KUMAR N, WEIR B S,et al. The ApMat marker can resolve Colletotrichum species: a case study with Mangifera indica[J]. Fungal Diversity, 2013(61): 117-138.
    [27]

    VU D, GROENEWALD M, DE V M,et al. Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation[J]. Studies in Mycology, 2019, 92: 135-154.
    [28]

    SU Y Y, NOIREUNG P, LIU F,et al. Epitypification of colletotrichum musae, the causative agent of banana anthracnose[J]. Mycoscience, 2011, 52(6): 376-382. doi: 10.1007/S10267-011-0120-9
    [29]

    ANA, MARGARITA, MANZANO,et al. First report of leaf anthracnose caused by Colletotrichum grossum on mango (Mangifera indica) in Cuba[J]. Journal of Plant Pathology, 2018, 329(100): 329. doi: 10.1007/s42161-018-0040-z
    [30]

    SILVA D D, GROENEWALD J Z, CROUS P W,et al. Identification, prevalence and pathogenicity of Colletotrichum species causing anthracnose of Capsicum annuum in Asia[J]. IMA Fungus, 2019, 10(1): 8. doi: 10.1186/s43008-019-0001-y
    [31]

    HASSAN O, LEE Y S, CHANG T. Colletotrichum Species Associated with Japanese Plum (Prunus salicina) Anthracnose in South Korea[J]. Scientific Reports, 2019, 9(1): 12089. doi: 10.1038/s41598-019-48108-1
    [32]

    CAO X R, ZHU Z J, CHE H Y,et al. Population structure, pathogenicity, and fungicide sensitivity of Colletotrichum siamense from different hosts in Hainan, China[J]. Plant Pathology, 2021, 70(5): 1158-1167. doi: 10.1111/ppa.13361
    [33]

    FANG L, LEI C, CROUS P W,et al. Circumscription of the anthracnose pathogens Colletotrichum lindemuthianum and C. nigrum[J]. Mycologia, 2013, 105(4): 844-860. doi: 10.3852/12-315
    [34] 王丽贞. 芳香樟炭疽病的研究[D]. 福建: 福建农林大学, 2007: 9-14.

    [35]

    JEFFRIES P, DODD J C, JEGER M J,et al. The biology and control of Colletotrichum species on tropical fruit crops[J]. Plant Pathology, 2010, 39(3): 343-366.
    [36] 周 蒙. 中国生物农药发展的现实挑战与对策分析[J]. 中国生物防治学报, 2021, 37(1): 184-192.

    [37] 李文静, 王秋霞, 李 园, 等. 我国防治主要土传病害的农药登记和推广情况 [J].农药, 2021, 60(8): 547-554 + 570.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3) / Tables(5)

Article views(2354) PDF downloads(90) Cited by()

Proportional views

Identification of the Pathogen Causing Leaf Spot of Cinnamomum camphora, Mycelial Growth Rate, and Its Fungicide Selection

    Corresponding author: YIN Fu-qiang, 20200002@sanxiau.edu.cn
    Corresponding author: LIU Ming, liuming780906@163.com
  • 1. Chongqing Three Gorges University, College of Biological and Food Engineering, Wanzhou, Chongqing, 404120, China
  • 2. The Chongqing Engineering Laboratory for Green Cultivation and deep processing of the Three Gorges Reservoir Area’s Medicinal Herbs, Wanzhou, Chongqing, 404120, China
  • 3. Chongqing Three Gorges Vocational College, College of Agriculture and Forestry Science and Technology, Wanzhou, Chongqing, 404155, China

Abstract:  Objective To Identify the pathogen causing leaf spot of Cinnamomum camphora in Wanzhou District, clarify the characteristics of mycelium growth, and select fungicides that effectively inhibit the pathogen for providing a theoretical basis for prevention and control of leaf spot disease. Method The pathogen was isolated and purified by the tissue separation method, and the pathogenicity was tested by Koch's method. Pathogens were identified based on morphological characteristics and multilogues phylogenetic analysis combined with ITS, tub2, GAPDH, and ApMat genes; The hyphae growth rate method was used to study the characteristics of mycelium growth, and the fungicides were selected. Result The isolated strains were grayish and the edge was white when the mycelium was cultured on PDA medium for 3 days. The orange conidiomata appeared in the late. The conidia were long oval, blunt round at both ends, transparent and colorless were independent cells. The measured spore size was (9.8~18.6) μm × (4.2~6.0) μm; Pathogenicity of strain ZT-1 was tested by two methods, both of which could cause the leaf spot disease of C. camphora leaves; The representative strains ZT-1 and ZT-5 clustered with Colletotrichum gloeosporioides, and the reliability was 100%; The optimum growth temperature of the pathogen was 28 ℃; The optimum pH value was 6.0; Potato Dextrose Agar medium was beneficial to mycelial growth; The optimum carbon and nitrogen sources were glucose and glycine; The optimum lighting condition was total darkness. Among the chemical and biological fungicides, 15% triadimefon WP and 1% osthol EW were highly toxic and the inhibition effect of C. gloeosporioides was obvious. Their EC50 values were less than 10 μg · mL−1. Conclusion C. gloeosporioides is the pathogen causing anthracnose on C. camphora in Wanzhou District and 15% triadimefon WP can be used as a fungicide for control.

  • 香樟[Cinnamomum camphora (L.) Presl]又名乌樟、芳樟、樟木等,是樟科(Lauraceae)樟属(Cinnamomum)常绿高大乔木,主要种植于长江以南地区,是我国南方重要经济和园林树种[1-2]。香樟中富含的芳樟醇是世界上应用最广、用量最大的香料[3],所含的精油是植物源杀蚜虫剂之一[4],石油醚提取物能够有效抑制草莓灰霉菌(Botrytis cinerea)、瓜果腐霉菌(Pythium aphanidermatum),茄链格孢病菌(Alternaria solani)等真菌[5-6]

    香樟的病害主要有囊孢壳菌(Physalospora spp.)和茎点霉(Phoma spp.)引起的溃疡病[7]Capnodium spp.引起的煤污病、拟盘多毛孢(Pestalotiopsis spp.)引起的枯枝病、炭疽菌(Colletotrichum spp.)引起的炭疽病等。对于炭疽病,葛建明等人[8]通过形态学鉴定,将上海市芳香樟炭疽病确定为胶孢炭疽菌(C. gloeosporioides),但未进行分子鉴定。徐明珠等人[9]鉴定出荆州市香樟炭疽病病原菌为果生炭疽菌(C. fructicola)和暹罗炭疽菌(C. siamense)。炭疽菌中存在着许多复合种,且复合种种类孢子形态和培养特性差异不大、一种炭疽菌不同培养条件下孢子形态也有差异,如C. alienumC. gloeosporioides,仅通过孢子形态和单基因序列难以鉴定其种类[10-11],近年研究结果表明,联合mating-type protein(MAT1-2)序列进行多基因联合分析能够更有效区分胶孢炭疽复合种[12-14],如Liu等人[15]应用ApMat联合分析将山茶炭疽病的胶孢炭疽复合种(C. gloeosporioides)区分开;傅敏等人[16]利用分生孢子、刚毛、附着胞形态大小联合多基因序列分析,将梨树炭疽病病原(Colletotrichum spp.)种类区分开。本研究首次结合炭疽菌孢子、刚毛、附着胞等形态和ApMat联合的多基因序列分析鉴定引起万州香樟叶斑病的病原菌种类,并选用5种化学农药和5种生物农药进行室内毒力测定,旨在筛选出低毒低残留的杀菌剂,为深入研究香樟叶斑病的发病规律和科学防治提供一定的理论依据。

    • 2021年9月从重庆市万州区百安坝街道采集具有典型发病症状的叶片样本,并带回实验室观察并记录发病情况,进一步对样本进行分离纯化。

      试验试剂:DNA提取试剂盒(天根生化,DP305)、PCR Master Mix(2X)(天根生化,K1071)、ddH2O(天根生化,R0581),扩增上下游引物序列如表1所示。根据《植病研究方法》[17]和《植物病理学实验技术》[18]制备试验所需培养基。供试杀菌剂名称、生产厂家及所用浓度如表2所示。

      目的基因
      Gene
      引物名称
      Primers
      序列(5′ to 3′)
      Sequences
      碱基数
      Base number
      目的片段大小
      Size of target gene fragment/bp
      参考文献
      Reference
      ITS ITS1 TCC GTA GGT GAA CCT GCG G 19 500 [19]
      ITS4 TCC TCC GCT TAT TGA TAT GC 20
      tub2 T1 AAC ATG CGT GAG ATT GTA AGT 21 700 [20]
      B-tub2 TGG ATG TTG TTG GGA A 16
      GAPDH GDF GCC GTC AAC GAC CCC TTC ATT GA 23 200 [21]
      GDR GGG TGG AGT CGT ACT TGA GCA TGT 24
      ApMat ApF2 ACC CCG CCC CAT GAA CAA GTG 21 800 [14]
      ApF6 CTA GAC CGG CCC GAT CAA GAC CAA AGA AG 29

      Table 1.  Primers for molecular identification

      供试药剂
      Fungicides
      剂型
      Formulation
      生产厂家
      Manufacturer
      浓度梯度
      Concentration/(μg·mL−1)
      化学杀菌剂
      Chemical fungicides
      代森锰锌
      mancozeb
      80%WP 科迪华农业科技有限责任公司 20、40、80、160、320
      甲基硫菌灵
      thiophanate-methyl
      50%WP 四川润尔科技有限公司 25、50、75、150、300
      百菌清
      chlorothalonil
      40%SC 日本史迪生物科学株式会社 15、30、60、120、240
      三唑酮
      triadimefon
      15%WP 四川润尔科技有限公司 5.6、11、23、45、90
      氢氧化铜
      copper hydroxide
      46%WG 科迪华农业科技有限责任公司 200、400、800、1 600、3 200
      生物杀菌剂
      Biological fungicide
      蛇床子素
      cnidiadin
      1%EW 内蒙古清源保生物科技有限公司 3.75、7.5、15、30、60
      中生菌素
      zhongshengmycin
      3%WP 深圳诺普信农化股份有限公司 0.75、1.5、3、7.5、15
      春雷霉素
      kasugamycin
      6%WP 陕西汤普生物科技有限公司 125、250、500、1 000、2 000
      多抗霉素
      polyoxins
      10%WP 山西绿海农药科技有限公司 6.25、12.5、25、50、80
      四霉素
      tetramycin
      0.3%AS 辽宁微科生物工程股份有限公司 5.625、11.25、22.5、45、90
      注: WP为可湿性粉剂,SC为悬浮剂,WG为水分散粒剂,EW为水乳剂,AS为水剂
        Notes: WP is a wettable powder, SC is a suspension agent, WG is a water dispersible granule, EW is a water emulsion, and AS is a water agent

      Table 2.  Chemical fungicides, biological fungicides and relevant concentrations

    • 从有典型症状的香樟叶片上切下3 mm × 5 mm的叶片样品若干,依次用75%的乙醇浸渍30 s、5%次氯酸钠3 min、无菌水冲洗3次,在无菌滤纸上去除水分,最后将叶片样本接种在马铃薯葡萄糖琼脂培养基(PDA)上。将分离后的菌株在25 ℃,黑暗条件下培养3~5 d,观察分离结果,纯化后保存菌株待鉴定。

    • 采用两种方法对代表菌株ZT-1进行致病性测定,若叶片有发病特征,随即将发病病菌再次进行分离纯化,经形态学和分子生物学鉴定后若符合第一次分离鉴定结果,则完成其致病性检验。

    • 用无菌解剖针沿叶脉两侧对称刺入,将直径约为5 mm的菌饼和无菌琼脂块分别接种到叶脉两侧,用保鲜膜对接种部位缠绕处理,重复3次,接种后的植株在自然状态下,保持相对湿度在80%~90%,观察并记录其发病情况。

    • 取健康的香樟植株,经无菌处理后,将含有55%甘油的1.0 × 107 CFU·mL−1孢子悬浮液用无菌笔刷均匀涂抹于香樟叶片背面[17,22],每片接种100 μL病原菌孢子悬浮液,重复3次,套袋保湿后置于室温培养,以接种55%甘油的健康植株作为对照,每天观察并记录发病情况。

    • 将纯化后的菌株在PDA培养基上以25 ℃培养,期间观察记录菌落和菌丝的着生状况及形态特征。在显微镜下随机选取100个孢子测量长度、宽度;配置75%的无菌PDA培养基,并将孢子接种于滴加PDA的凹玻片上[17],保湿培养,观察孢子萌发及附着胞发展状况,并拍照。

    • 菌株经培养后收集菌丝体,利用植物基因组DNA提取试剂盒对代表菌株ZT-1和ZT-5的DNA进行提取。使用引物ITS/ITS4、T1/B-tub2、GDF/GDR、ApF2/ApF6对ZT-1和ZT-5的核糖体转录间隔区序列(rDNA-ITS)、β-微管蛋白(beta-tubulin)、甘油醛3-磷酸脱氢酶(glyceraldehyde-3-phosphate dehydrogenase)、配偶蛋白交配型(Apn2-Mat1-2 intergenic spacer and partial mating-type protein)基因进行扩增。PCR扩增反应体系均为40 μL,其中2 × Taq Master Mix 20 μL、10 μmol·L−1上下游引物各1.6 μL、DNA模板3.2 μL,ddH2O补足至40 μL,PCR反应程序如表3。扩增后经1%的琼脂凝胶电泳检测,将剩下30 μL反应物送往上海生工生物工程(成都)股份有限公司进行测序,将测序所得结果通过NCBI进行Blast比对,在PhyloSuite软件中按照ITS-tub2-GAPDH-ApMat顺序串联,通过MEGA11.0软件的最大似然法(Maximum likelihood)构建系统发育树,重复值设置1 000次,建树所用序列登录号如表4

      基因
      Gene
      预变性温度/时间
      Initial denaturation temperature/time
      变性温度/时间
      Denaturation temperature/time
      退火温度/时间
      Annealing temperature/time
      延伸温度/时间
      Extension temperature/time
      ITS 94 ℃/5 min 94 ℃/45 s 54 ℃/45 s 72 ℃/1 min 72 ℃/10 min
      35循环
      tub2 94 ℃/5 min 94 ℃/45 s 60 ℃/45 s 72 ℃/1 min 72 ℃/10 min
      39循环
      GAPDH 95 ℃/5 min 95 ℃/45 s 60 ℃/45 s 72 ℃/1 min 72 ℃/10 min
      38循环
      ApMat 95 ℃/5 min 95 ℃/45 s 55 ℃/45 s 72 ℃/80 s 72 ℃/8 min
      38循环

      Table 3.  Parameter for genes PCR reaction procedure

      种名
      Species
      菌株编号
      Strain no.
      GenBank登陆号/
      GenBank accessions number
      参考文献
      Reference
      ITS tub2 GAPDH ApMat
      Colletotrichum gloeosporioides ZT-1 OP132776.1 OP161545.1 OP161546.1 OP800268.1
      Colletotrichum gloeosporioides ZT-5 OP787951.1 OP800272.1 OP800271.1 OP800269.1
      Colletotrichum camelliae LC2944/LF152 KJ955090.1 KJ955239.1 KJ954791.1 KJ954506.1 [14]
      Colletotrichum clidemiae ICMP 18658* JX010265.1 JX010438.1 JX009989.1 KC888929.1 [23]
      Colletotrichum psidii CBS 145.29/
      ICMP 19120*
      JX010219.1 JX010443.1 JX009967.1 KC888931.1 [10]
      Colletotrichum wuxiense JS1A32 KU251591.1 KU252200.1 KU252045.1 KU251722.1 [24]
      Colletotrichum wuxiense JS1A44 KU251592.1 KU252201.1 KU252046.1 KU251726.1 [24]
      Colletotrichum kahawae IMI 363578* FJ972607.1 FJ907447.1 FJ972584.1 JQ899281.1 [25]
      Colletotrichum camelliae (cont.) LC3100/LF308 KJ955120.1 KJ955268.1 KJ954821.1 KJ954535.1 [14]
      Colletotrichum camelliae (cont.) LC3101/LF309 KJ955121.1 KJ955269.1 KJ954822.1 KJ954536.1 [14]
      Colletotrichum henanense LF24/LC2820 KM610182.1 KM610184.1 KM610178.1 KM610174.1 [14]
      Colletotrichum henanense LF25/LC2821 KM610183.1 KM610185.1 KM610179.1 KM610175.1 [14]
      Colletotrichum cordylinicola LC0886/ICMP 18579* JX010226.1 JX010440.1 JX009975.1 JQ899274.1 [26]
      Colletotrichum aotearoa ICMP 18532* JX010205.1 JX010420.1 JX010005.1 KC888930.1 [10]
      Colletotrichum ti ICMP 4832* JX010269.1 JX010442.1 JX009952.1 KM360146.1 [10]
      Colletotrichum queenslandicum ICMP 1778* JX010276.1 JX010414.1 JX009934.1 KC888928.1 [10]
      Colletotrichum henanense CGMCC 3.17354/LC3030* KJ955257.1 KJ955257.1 KJ954810.1 KJ954524.1 [14]
      Colletotrichum alatae ICMP 17919/CBS 304.67* JX010190.1 JX010383.1 JX009990.1 KC888932.1 [27]
      Colletotrichum siamense LC0148 KJ955078.1 KJ955227.1 KJ954779.1 KJ954494.1 [14]
      Colletotrichum gloeosporioides LF916 KJ955226.1 KJ955371.1 KJ954927.1 KJ954629.1 [14]
      Colletotrichum gloeosporioides LF604 KJ955176.1 KJ955323.1 KJ954877.1 KJ954584.1 [14]
      Colletotrichum salsolae ICMP 19051* JX010242.1 JX010403.1 JX009916.1 KC888925.1 [10]
      Colletotrichum aeschynomenes ICMP 17673/ATCC 201874 JX010176.1 JX010392.1 JX009930.1 KM360145.1 [10]
      Colletotrichum musae CBS 116870/ICMP 19119* JX010146.1 JQ005861.1 JX010050.1 KC888926.1 [28]
      Colletotrichum aenigma ICMP 18608* JX010244.1 JX010389.1 JX010044.1 KM360143.1 [10]
      Colletotrichum chrysophilum AFK22 MN625456.1 MN622866.1 MN632505.1 MN622875.1
      Colletotrichum chrysophilum CMM4268 KX094252.1 KX094285.1 KX094183.1 KX094325.1
      Colletotrichum grossum INIFAT 4145 MG812307.1 MG826118.1 MG826116.1 MG826119.1 [29]
      Colletotrichum asianum GM595/MTCC 11680* JQ894679.1 JQ894601.1 JQ894623.1 JQ894554.1 [26]
      Colletotrichum tainanense CPC:30245* MH728818.1 MH846558.1 MH728823.1 MH728836.1 [30]
      Colletotrichum conoides ANWA14 MZ496950.1 MZ504788.1 OM001011.1 [31]
      Colletotrichum asianum CBS130418/ICMP 18580* FJ972612.1 JX010406.1 JX010053.1 FR718814.1 [10]
      Colletotrichum arecicola cb7 MW561339.1 MW557477.1 MW557459.1 MW557495.1 [32]
      Colletotrichum arecicola cb8 MW561340.1 MW557478.1 MW557460.1 MW557496.1 [32]
      Colletotrichum rhexiae CBS 133132* JX145157.1 JX145209.1 JX145302.1 [15]
      Colletotrichum rhexiae CBS 133134* JX145128.1 JX145179.1 JX145290.1 [15]
      Monilochaetes infuscans CBS 869.96* JQ005780.1 JQ005864.1 JX546612.1 [33]
      注:“*”为模式菌,粗体字且加“★”为供试菌株,其余为参考菌株,“—”代表无参考文献或无该基因
        Note: “*” is the model strain, bold characters and “★” are the test strains, and the rest are reference strains, “—” represents no reference or absence of the gene.

      Table 4.  GenBank accession numbers used in the phylogenetic tree

    • 以不同培养基、温度、光照、pH、碳源、氮源为变量,将直径为5 mm的菌饼接种于供试培养基平板(9 cm)的中央,置于培养箱中培养,研究不同培养条件对代表菌株ZT-1菌丝生长速率的影响。

      分别设置10、15、20、25、28、30、37 ℃共7个温度梯度;供试培养基分别为燕麦片琼脂培养基(OMA)、玉米淀粉琼脂培养基(CMA)、查氏培养基(Czapek)、马铃薯蔗糖琼脂培养基(PSA)、马铃薯葡萄糖琼脂培养基(PDA);用1 mol·L−1的NaCl和1 mol · L−1的NaOH调节pH值为5.0、6.0、7.0、8.0、9.0共5个梯度;光照条件设置全光照、全黑暗、光暗交替(12 h光照/12 h黑暗)3个处理;将查氏培养基中的蔗糖用等量替换的方法换成可溶性淀粉、葡萄糖、乳糖、麦芽糖,制成不同碳源培养基,以不含碳源培养基作为对照;将查氏培养基中的硝酸钠用等量替换的方法换成尿素、甘氨酸、氨水、硫酸铵,制成不同氮源培养基,以不含氮源培养基作为对照。

      试验中除不同温度对菌丝生长的影响外,其余培养条件均为25 ℃、光暗交替(12 h光照/12 h黑暗);除不同培养基和碳氮源对菌丝生长的影响外,其余供试培养基均为PDA培养基。试验中接种所用菌块直径均为5 mm,每个处理重复3次。从第5 d开始观察培养基中菌落的生长情况,采用“十字交叉法”测量菌落平均直径,直到对照长满9 cm培养皿结束,按照菌丝生长速率=(处理菌落直径−5/2 × 培养天数) × 100% 计算其菌丝生长速率,利用Excel 2014和spass 27.0分析、处理数据。

    • 采用菌丝生长速率法测定不同杀菌剂对香樟炭疽病病原菌的抑制效果。先用无菌水将各药剂配制成母液,再用无菌水按表3所示浓度配制成5个浓度梯度,将直径为5 mm菌饼移入含药培养基平板(9 cm)中央,以含有无菌水的PDA培养基做对照组,每个浓度梯度和对照组均设3次重复。25 ℃恒温条件下培养3 d后,用“十字交叉法”[18]测量每个菌落的直径,按照菌落生长抑制率(%)=(对照菌落直径-处理菌落直径/对照菌落直径−5) × 100% 计算抑菌率。

      利用Excel 2014和SPSS 27.0软件进行数据处理。以各杀菌剂浓度的对数为横坐标(x),抑菌率的几率值为纵坐标(y),求出各杀菌剂对香樟炭疽菌株的毒力回归方程、有效抑制中浓度(EC50值)和相关系数(r2)。EC50越小,表明该杀菌剂对香樟炭疽病菌的抑制作用越强,用药越安全,反之越弱。相关系数r2表示抑菌率与药剂浓度之间呈正相关性的密切程度。

    2.   结果与分析
    • 本研究共分离出18个培养性状相同的菌落,初步鉴定为炭疽属(Colletotrichum spp.)真菌,经致病性测定,发现ZT-1致病力最强,以优势菌株ZT-1进行菌丝生长速率测定和室内毒力测定的研究,用代表菌株ZT-1和ZT-5进行多基因联合分析。

      该病原菌最先危害香樟老叶,后期逐渐向新叶扩展,其发病率为20%~35%,病情指数在20~25,发病初期叶片上呈现黄褐色的斑点,斑点大小通常1~2 mm,发病严重时小斑点扩大进而融合成不规则紫褐色或灰褐色坏死斑点(图1A,1B)。

      Figure 1.  Symptoms of C. camphora leaf spot disease, and pathogen culture characteristics and pathogenicity test

    • 健康叶片接种菌饼5 d后开始发病,发病部位呈灰褐色,病斑大小5~6 mm,而接种PDA琼脂块的一侧仅表现刺伤(图1J)。

    • 健康的植株涂抹上菌悬液3 d后,在叶片表面出现多个紫褐色的病斑(图1K),7 d后叶片形成黑褐色病斑,而对照植株未曾发病(图1L)。

      根据柯赫氏法则,对发病部位组织病原物进行再分离、纯化和鉴定,分离物形态特征与原接种菌株一致,在无菌PDA培养基块的叶片中没有分离到相关致病菌,因此,确定ZT-1菌株为重庆万州地区香樟叶斑病的致病菌。

    • 菌株ZT-1和ZT-5的培养性状基本相同,在PDA培养基上培养3 d菌落中央呈现灰褐色(图1E),边缘灰白色,7 d后菌落中央形成橘红色的孢子堆(图1F),在体式显微镜下观察孢子堆为乳突状(图1G),大小在0.2~0.8 mm,将孢子堆用无菌接种针刮下,在显微镜下观察到有分生孢子盘(图1H)和刚毛(图1I),孢子盘大小为0.24~0.56 mm,刚毛直立、无隔膜,大小为(128.3~167.6) μm × (2.8~3.6) μm,分生孢子呈长椭圆形、两端钝圆、透明无色、为独立的单胞(图1C),测量其孢子大小为(9.7~18.6) μm × (4.2~6.0) μm,附着胞水滴状(图1D),大小为(3.8~6.5) μm × (4.0~5.2) μm,初步鉴定为炭疽菌属真菌,但具体种类还需进一步确定。

    • 用最大似然法构建的进化树如图2所示,建树所用登录号如表4,多基因分析结果表明菌株ZT-1和ZT-5与Colletotrichum gloeosporioides聚在一支,支持率为100%,将测序结果提交至NCBI/GenBank获得登录号。结合形态学鉴定结果,将引起万州区香樟叶斑病病原菌鉴定为胶孢炭疽菌(C. gloeosporioides)。

      Figure 2.  Phylogenetic tree combined with rDNA ITS sequence, tub2, G3PDH, and ApMat genes

    • C. gloeosporioides在20 ℃以下生长缓慢,25~30 ℃条件下菌丝生长较快, 28 ℃培养5 d后菌落直径达78.33 mm,37 ℃时菌丝的生长明显受到了抑制,菌落直径仅有25.67 mm,表明15 ℃以下及37 ℃以上均能抑制菌丝的生长(图3A)。

      Figure 3.  Effects of different culture conditions on mycelium growth of C. gloeosporioides

    • C. gloeosporioides在PDA培养基上生长最快,25 ℃培养5 d后菌落直径达80.55 mm,其次为Czapek、OMA培养基、CMA培养基,最慢的是PSA培养基,菌落直径仅有51.83 mm (图3B)。

    • C. gloeosporioides在pH=6.0时菌落直径最大,达到68.33 mm,当pH由6.0逐渐上升到9.0时,菌落生长受到抑制,pH=9.0时菌落直径仅有56.00 mm,由此表明弱酸性条件有利于菌丝的生长,而弱碱性条件抑制菌丝的生长(图3C)。

    • C. gloeosporioides在不同光照处理下存在显著差异,黑暗条件下菌丝长得最快,菌落直径为61.33 mm,其次是光暗交替,而全光照菌丝生长最慢(图3D)。

    • C. gloeosporioides在含有葡萄糖的培养基中生长最好,菌落直径可达70.67 mm,其次是麦芽糖、查氏碳、可溶性淀粉,最差的是乳糖,菌落直径仅有49.67 mm(图3E)。

    • C. gloeosporioides在不同氮源中存在显著差异,以甘氨酸为氮源的培养基生长得最好,菌落直径可达81.83 mm,其次是查氏氮、硫酸铵、尿素,最差的为氨水,菌落直径仅有8.03 mm (图3F)。

    • 5种化学杀菌剂的EC50值由大到小依次为46%氢氧化铜WG>50%甲基硫菌灵WP>80%代森锰锌WP>40%百菌清SC>15%三唑酮WP。其中80%代森锰锌WP、40%百菌清SC、15%三唑酮WP的EC50均小于10 μg·mL−1,说明香樟炭疽病对这3种杀菌剂的敏感性极高,是化学防治香樟炭疽病的良好农药,其中15%三唑酮WP的防治效果最好,如表5

      杀菌剂
      Fungicides
      毒力回归方程
      Toxicity regression equation
      相关系数(r2)
      Correlation coefficient
      EC50/(μg·mL−1)
      Effective concentration
      化学杀菌剂
      Chemical fungicides
      15%三唑酮WP y=0.961 6x + 5.150 6 0.923 3 1.661 6
      40%百菌清SC y=0.345 1x + 4.840 3 0.902 3 2.124
      80%代森锰锌WP y=0.314 6x + 4.446 4 0.967 7 5.777
      50%甲基硫菌灵WP y=0.546 6x + 3.717 5 0.975 1 10.813
      46%氢氧化铜WG y=0.900 6x-0.518 9 0.916 9 442.756
      生物杀菌剂
      Biological fungicide
      1%蛇床子素EW y=0.483 4x + 4.798 3 0.946 9 2.639 4
      0.3%四霉素AS y=0.657 6x + 3.747 1 0.908 6 6.188
      3%中生菌素WP y=0.408 5x + 4.101 9 0.989 7 9.037
      10%多抗霉素WP y=1.204 9x + 3.675 2 0.923 0 11.713 5
      6%春雷霉素WP y=0.612 8x + 1.256 9 0.966 7 405.74

      Table 5.  Toxicity tests of fungicides

    • 5种生物杀菌剂的EC50值由大到小依次为6%春雷霉素WP>10%多抗霉素WP>3%中生菌素WP>0.3%四霉素AS>1%蛇床子素EW。其中1%蛇床子素EW、3%中生菌素WP、0.3%四霉素AS的EC50均小于10 μg·mL−1,说明香樟炭疽病菌对这3种生物杀菌剂极为敏感;1%蛇床子素EW是生物防治香樟炭疽病的良好生物农药,如表5

    3.   讨论
    • 本研究中香樟叶斑病症状与荆州、上海和福建省三明市发现的基本相同,引起荆州香樟叶斑病病原菌为果生炭疽(C. fructicola)和暹罗刺盘孢(C. siamense[9],引起上海和福建三明市香樟炭疽病的病原菌为C. gloeosporioides[8,34],但上海香樟炭疽病与福建三明市仅进行了形态鉴定,并未进行分子鉴定,本研究经形态学结合多基因序列分析进一步证实了胶胞炭疽菌(C. gloeosporioides)可以引起香樟炭疽病;本研究分离出的病原菌最适培养基和pH与上海和福建省三明市炭疽病病原菌基本相同,但在黑暗条件、氮源为甘氨酸、28 ℃有利于胶胞炭疽菌(C. gloeosporioides)菌丝生长,这可能与地域差异及重庆市高山环境有关。

      炭疽菌是一种高等真菌,寄主范围广泛,具有种类多、变异快等特点[35],特别是其复合种鉴定一直是病原菌分类的难题,仅通过形态特征和单基因分析难以准确鉴定,胶孢炭疽复合群是炭疽菌中最为特殊的一类,可分为26个复合种,且复合种种内孢子形态差异较小,必须结合其刚毛、附着胞、载孢体、孢子盘等形态,并联合ApMat的多基因序列对其复合种进行鉴定,结果更为准确。本研究是首次结合这些形态特征和基于ApMat的多基因进行鉴定。生产上其防治主要以化学防治为主,但长期使用化学农药,极易产生抗药性,影响防治效果;与化学农药相比,生物农药具有低毒、低残留、选择性强、不易产生抗药性等优点[36],本研究用了5种化学杀菌剂和5种生物杀菌剂对C. gloeosporioides的室内毒力进行测定,发现15%三唑酮WP和1%蛇床子素EW的抑菌效果最好,其EC50值均小于10 μg·mL−1,三唑酮是防治炭疽病时常用的化学杀菌剂,抑制菌丝生长效果优于抑制孢子形成,具有广谱性、低毒性、低残留、多作用位点等特性;蛇床子素是一种植物源农药,通过抑制真菌细胞壁生长来抑制菌丝生长,具有环保、不污染环境、不伤害天敌、不易诱发抗药性等优点[37]。由于植物病害发生不仅与病原、寄主相关,还与环境条件有关,田间防治环境复杂,室内药剂筛选结果可能与田间防治效果存在差异,因此后续研究可进行田间防效试验,进一步探究杀菌剂对病原菌孢子的影响。

    4.   结论
    • 本研究通过形态学和多基因序列分析表明胶孢炭疽(C. gloeosporioides)是引起香樟叶斑病的病原菌,并通过致病性验证了致病菌。通过菌丝生长速率法确定28 ℃、PDA培养基、碳源为葡萄糖、氮源为甘氨酸、弱酸和黑暗的条件下有利于胶孢炭疽菌(C. gloeosporioides)菌丝生长,15%三唑酮可湿性粉剂可作为防治香樟炭疽病的杀菌剂。

Reference (37)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return