• 中国中文核心期刊
  • 中国科学引文数据库(CSCD)核心库来源期刊
  • 中国科技论文统计源期刊(CJCR)
  • 第二届国家期刊奖提名奖
Volume 36 Issue 5
Oct.  2023
Article Contents
Turn off MathJax

Citation:

Sensitivity of Coryneum populinum Bres. to Five Fungicides

  • Corresponding author: SHI Ying, shiyingfungi@126.com
  • Received Date: 2023-03-28
    Accepted Date: 2023-05-11
  • Objective On the basis of the optimum mycelial growth temperature investigation of Coryneum populinum Bres, the pathogen was measured for susceptibility to five fungicides. The approach provides a theoretical reference for disease control of poplar gray spot and fungicide acting mechanism against the pathogen. Method The mycelium growth rate method and conidia germination method were used to determine the antibacterial effects of five tested fungicides on C. populinum mycelium growth and conidia germination, and the toxicity regression equation was constructed and the EC50 value was calculated. The morphological changes of mycelia and conidial germination were observed after fungicide treatment. Result The optimum mycelial growing temperature of C. populinum was 20 ℃ with the colony diameter of 4.25cm after 25 days, and the conidial germination rate was 79.00% after 12h on PDA. The mycelial growth and conidial germination were both inhibited at above 30 ℃. The inhibitory effects of the five fungicides on mycelial growth of the pathogen showed the trend of Difenoconazole > Tebuconazole > Carbendazim > Prochloraz > Thiophanate-methyl, with the average EC50 values of 0.0048, 0.024, 0.047, 0.25 and 0.49μg·mL −1, respectively. The virulence of the five fungicides to the pathogen’s conidial germination showed the pattern of Difenoconazole > Prochloraz > Thiophanate-methyl > Carbendazim > Tebuconazole, with the average EC50 values of 85.07, 101.23, 123.28, 254.80 and 327.78μg·mL −1, respectively. The hyphal surface of the pathogen became rough with enlarged branches, and no spore was produced after application of Difenoconazole. The conidial germination became morphologically abnormal with branching and enlargement or no enlagement of germ tubes. Conclusion The fungicide difenoconazole has high virulence to C. populinum, and it shows a potentially effective candidate agent for management of popular grey spot.
  • 加载中
  • [1] 李清华, 邢月红, 董建霞, 等. 浅谈杨树灰斑病的防治[J]. 中国农业信息, 2016, 189(12):134-135. doi: 10.3969/j.issn.1672-0423.2016.12.086

    [2] 杨 帆, 张林浩, 李红霞, 等. 杨树灰斑病的发生与防治[J]. 吉林农业, 2016, 371(2):97.

    [3] 鞠国柱, 徐素琴, 张连寿, 等. 杨树灰斑病的研究[J]. 林业科学, 1965(4):41-46.

    [4] 王 岩. 杨树常见病虫害种类及防治措施[J]. 乡村科技, 2022, 13(3):106-108.

    [5] 蔡有柱. 杨树灰斑病的防治试验[J]. 青海农林科技, 2012, 87(3):67-68.

    [6] 矫丽曼. 辽宁杨树叶部病虫害及防治措施[J]. 内蒙古林业调查设计, 2016, 39(6):95-97 + 114.

    [7] 赵金秀. 菏泽平原农区杨树灰斑病发生规律和防控技术研究[J]. 生物灾害科学, 2021, 44(3):288-293.

    [8]

    ZUBROD J P, BUNDSCHUH M, ARTS G,et al. Fungicides: an overlooked pesticide class?[J]. Environmental Science & Technology, 2019, 53(7): 3347-3365.
    [9]

    PAN X, DONG F, WU X,et al. Progress of the discovery, application, and control technologies of chemical pesticides in China[J]. Journal of Integrative Agriculture, 2019, 18(4): 840-853. doi: 10.1016/S2095-3119(18)61929-X
    [10] 吴文君, 罗万春. 农药学(第二版)[M]. 北京: 中国农业出版社, 2020.

    [11] 孟 珂, 张亚波, 常 君, 等. 8种杀菌剂对9种薄壳山核桃炭疽病病原菌的毒力测定[J]. 林业科学研究, 2021, 34(1):153-164.

    [12] 刘雪英. 杨树灰斑病拮抗放线菌的筛选、鉴定及防治效果评价的研究[D]. 哈尔滨: 东北林业大学, 2015.

    [13]

    FANG Y L, ZHOU Y Y, LI X,et al. Histological characterization of the early stage infection events of Setosphaeria turcica in maize[J]. Plant Pathology, 2022, 71(2): 251-261. doi: 10.1111/ppa.13486
    [14] 柴海燕, 贾 娇, 白 雪, 等. 吉林省玉米穗腐病致病镰孢菌的鉴定与部分菌株对杀菌剂的敏感性[J]. 中国农业科学, 2023, 56(1):64-78.

    [15] 黄艳飞, 汪汉成, 陈庆元, 等. 六种杀菌剂对烟草赤星病菌菌丝生长和分生孢子萌发的抑制作用[J]. 农药学学报, 2016, 18(2):263-267.

    [16] 孙广宇, 宗兆峰. 植物病理学实验技术[M]. 北京: 中国农业出版社, 2002.

    [17]

    ZHAO W, CHI Y K, CAO S,et al. Occurrence of root rot caused by Fusarium fujikuroi on soybean (Glycine max) in the central eastern regions, China[J]. Plant Disease, 2020, 104(3): 981.
    [18]

    AKRAM W, AHMAD A, YASIN N A,et al. First report of stem rot of taro caused by Pythium ultimum in China[J]. Plant Disease, 2020, 104(3): 995.
    [19] 张 琳, 占浩鑫, 冯志伟, 等. 人参生炭疽菌(Colletotrichum panacicola)和线列炭疽菌(C. lineola)的生物学特性及其对不同杀菌剂的敏感性研究[J]. 植物病理学报, 2022, 52(4):648-657.

    [20]

    YIN H, ZHOU J B, CHEN Y L,et al. Morphology, phylogeny, and pathogenicity of Trichothecium, Alternaria, and Fusarium species associated with panicle rot on Chenopodium quinoa in Shanxi Province, China[J]. Plant Pathology, 2022, 71(2): 344-360. doi: 10.1111/ppa.13462
    [21] 王 艳, 晋 玲, 曾翠云, 等. 柴胡斑枯病病原及其生物学特性[J]. 植物保护, 2017, 43(6):78-84 + 96. doi: 10.3969/j.issn.0529-1542.2017.06.012

    [22]

    HIEN A S, SOMA D D, SOMÉ F A,et al. Short persistence and vector susceptibility to ficam 80WP (bendiocarb active ingredient) during pilot application of indoor residual spraying in Burkina Faso, West Africa[J]. Journal of Medical Entomology, 2021, 58(2): 781-786. doi: 10.1093/jme/tjaa240
    [23]

    LIANG S, LI Y, LIU S,et al. The sensitivity of Didymella bryoniae to difenoconazole and boscalid and the synergistic mechanism of fungicide co-formulation[J]. European Journal of Plant Pathology, 2021, 161(4): 865-879. doi: 10.1007/s10658-021-02368-8
    [24] 周明国. 杀菌剂毒力及其生物测定[J]. 农药学学报, 2022, 24(5):904-920.

    [25]

    VERRO R, FINIZIO A, OTTO S,et al. Predicting pesticide environmental risk in intensive agricultural areas. II: Screening level risk assessment of complex mixtures in surface water[J]. Environmental Science & Technology, 2009, 43(2): 530-537.
    [26]

    WILLIAMS P R D, DOTSON G S, MAIER A. Cumulative risk assessment (CRA): transforming the way we assess health risks[J]. Environmental Science & Technology, 2012, 46(20): 10868-10874.
    [27]

    ROBBERTSE B, VAN DER RIJST M, VAN AARDE I M R,et al. DMI sensitivity and cross-resistance patterns of Rhynchosporium secalis isolates from South Africa[J]. Crop Protection, 2001, 20(2): 97-102. doi: 10.1016/S0261-2194(00)00061-2
    [28] 张保. 咪鲜胺对意大利青霉菌的抑制作用及其抗性机制的研究[D]. 武汉: 华中农业大学, 2021.

    [29] 高杨杨, 禾丽菲, 李北兴, 等. 山东省辣椒炭疽病病原菌的鉴定及高效防治药剂的筛选[J]. 中国农业科学, 2017, 50(8):1452-1464. doi: 10.3864/j.issn.0578-1752.2017.08.009

    [30] 赵 华, 周天仓, 程晶晶, 等. 三唑类杀菌剂对苹果褐斑病菌生长发育的毒力及其防病作用[J]. 林业科学, 2009, 45(3):68-73.

    [31] 宋化稳, 徐娜娜, 高德良, 等. 16种杀菌剂对桃褐腐病菌菌丝生长和孢子萌发的抑制作用比较[J]. 现代农药, 2020, 19(6):49-54.

    [32]

    YIN H, ZHOU J, LV H,et al. Identification, pathogenicity, and fungicide sensitivity of Ascochyta caulina (Teleomorph: Neocamarosporium calvescens) associated with black stem on quinoa in China[J]. Plant Disease, 2020, 104(10): 2585-2597. doi: 10.1094/PDIS-09-19-2042-RE
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4) / Tables(2)

Article views(1840) PDF downloads(77) Cited by()

Proportional views

Sensitivity of Coryneum populinum Bres. to Five Fungicides

    Corresponding author: SHI Ying, shiyingfungi@126.com
  • 1. College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong 030619, China
  • 2. Shanxi Vocational University of Engineering Science and Technology, Jinzhong 030619, China

Abstract:  Objective On the basis of the optimum mycelial growth temperature investigation of Coryneum populinum Bres, the pathogen was measured for susceptibility to five fungicides. The approach provides a theoretical reference for disease control of poplar gray spot and fungicide acting mechanism against the pathogen. Method The mycelium growth rate method and conidia germination method were used to determine the antibacterial effects of five tested fungicides on C. populinum mycelium growth and conidia germination, and the toxicity regression equation was constructed and the EC50 value was calculated. The morphological changes of mycelia and conidial germination were observed after fungicide treatment. Result The optimum mycelial growing temperature of C. populinum was 20 ℃ with the colony diameter of 4.25cm after 25 days, and the conidial germination rate was 79.00% after 12h on PDA. The mycelial growth and conidial germination were both inhibited at above 30 ℃. The inhibitory effects of the five fungicides on mycelial growth of the pathogen showed the trend of Difenoconazole > Tebuconazole > Carbendazim > Prochloraz > Thiophanate-methyl, with the average EC50 values of 0.0048, 0.024, 0.047, 0.25 and 0.49μg·mL −1, respectively. The virulence of the five fungicides to the pathogen’s conidial germination showed the pattern of Difenoconazole > Prochloraz > Thiophanate-methyl > Carbendazim > Tebuconazole, with the average EC50 values of 85.07, 101.23, 123.28, 254.80 and 327.78μg·mL −1, respectively. The hyphal surface of the pathogen became rough with enlarged branches, and no spore was produced after application of Difenoconazole. The conidial germination became morphologically abnormal with branching and enlargement or no enlagement of germ tubes. Conclusion The fungicide difenoconazole has high virulence to C. populinum, and it shows a potentially effective candidate agent for management of popular grey spot.

  • 由杨棒盘孢菌(Coryneum populinum Bres.)侵染引起的杨树灰斑病在我国东北、华北、西北和华东地区发生普遍,尤其以幼苗和幼树受害最重,可造成杨树产量损失约16%,易感病品种损失甚至高达60%[1]。该病菌主要侵染叶片,也可侵染嫩梢和枝干。在发病初期,叶片上出现水渍状斑点,逐渐扩大成褐色不规则形,后病斑中心呈灰白色,边缘呈灰褐色,上生黑绿色霉状物。严重发病时可使叶片提前脱落,苗木顶梢和嫩枝梢死亡变黑,给林业经济带来巨大损失[2]

    目前,化学药剂仍然是防治杨树灰斑病的最主要手段,具有效果显著、成本低廉等优点,是使用最为广泛的防治措施。研究发现,赛力散、速克灵、代森锰锌、多菌灵和甲基托布津等多种化学药剂对杨树灰斑病具有一定的防治效果[3-7]。但由于化学农药过量和不合理的使用,病菌的抗药性问题日益严重,对林业健康可持续的发展以及环境安全造成了严重的影响[8-9]。随着经济发展方式的转变,社会环保意识的不断加强,低毒、高效、安全、环保的农药已成为我国农林业发展的必然趋势[10]。本文在开展杨树灰斑病菌C. populinum菌丝生长和分生孢子萌发与温度关系研究的基础上,对5种供试杀菌剂对病菌的毒力进行了试验分析,以便为筛选出有效杀菌剂及后续开展毒理机制研究提供理论依据。

    • 供试菌株:杨棒盘孢菌(Coryneum populinum),由太原师范学院生物科学与技术学院提供。

      供试药剂:98%多菌灵(上海麦克林生化科技有限公司),97%戊唑醇(上海阿拉丁生化科技股份有限公司),甲基托布津分析标准品(上海阿拉丁生化科技股份有限公司),98%咪鲜胺(上海阿拉丁生化科技股份有限公司),98%恶醚唑(上海阿拉丁生化科技股份有限公司)。将上述5种原药配制成浓度为1 × 104 μg·mL−1的母液。多菌灵、戊唑醇、恶醚唑用二甲基亚砜溶解,甲基托布津和咪鲜胺用丙酮溶解,再用无菌水将上述母液稀释成试验所需的系列浓度。

    • PDA培养基[11]:用于菌株的分离、纯化、一般培养与保存。将1 mL杀菌剂与9 mL溶化后温度降至50 ℃左右的PDA培养基混匀,制备不同浓度的含药剂PDA培养基。

      产孢培养基[12]:用于菌株产生分生孢子。去皮马铃薯200 g,蛋白胨0.5 g,磷酸二氢钾3 g,硫酸镁1.5 g,琼脂20 g,加蒸馏水定容至1 000 mL,121 ℃高温灭菌20 min。

      孢子悬浮液:接种C. populinum菌株到产孢培养基上,置于恒温培养箱中培养5 d(20 ℃;12 h光照/12 h黑暗),用解剖刀轻轻刮取菌落表面分生孢子至20 mL离心管中,用无菌水冲洗,振荡,混匀后调制孢子悬浮液浓度1 × 105个·mL−1

    • C. populinum接种于PDA培养基和产孢培养基上,20 ℃(12 h光照/12 h黑暗)培养,每隔1 d观察记录病原菌菌落的形状、颜色,于第10 d在光学显微镜下(Olympus BX53)观察菌丝、分生孢子的形态及大小并拍照。

    • 在超净工作台中,用直径0.6 cm的打孔器在菌落边缘打取菌饼,接种1个C. populinum菌饼于PDA平板中央,然后置于5、10、15、20、25、30、35 ℃恒温培养箱中培养25 d(12 h光照/12 h黑暗),各处理重复3次,采用十字交叉法测量菌落生长直径,计算平均值。

      用移液器吸取200 μL孢子悬浮液于凹玻片的凹槽中,分别置于5、10、15、20、25、30、35 ℃培养箱中黑暗培养,12 h后观察分生孢子萌发情况,芽管长度大于等于孢子长度一半时视为萌发,在显微镜下计数,共计100个孢子,每个处理重复3次,计算孢子萌发率[13]。孢子萌发率=孢子萌发数/检查孢子总数 × 100%。

    • 采用菌丝生长速率法[14]测定杀菌剂对病菌的抑菌活性。在含药剂培养基平板中央接种1个菌饼,置于20 ℃培养箱中培养10 d(12 h光照/12 h黑暗),采用十字交叉法测量菌落直径,计算菌丝体生长抑制率。每处理重复3次,以无菌水中加入相同体积的二甲基亚砜或丙酮处理作为空白对照[15]。菌丝生长抑制率=(对照菌落直径−处理菌落直径)/(对照菌落直径−0.6 cm) × 100%。

      采用孢子萌发法[16]测定杀菌剂对分生孢子的抑菌活性。用移液器吸取200 μL孢子悬浮液均匀涂布于含药剂PDA平板上,置于20 ℃恒温培养箱黑暗培养,12 h后观察孢子萌发情况。每处理重复3次,以在平板上加等量无菌水作空白对照。孢子萌发计数同1.2.3。孢子萌发抑制率=(对照孢子萌发率-处理孢子萌发率)/对照孢子萌发率 × 100%。以杀菌剂浓度对数值为横坐标(x),菌丝生长或孢子萌发抑制率所对应的机率值为纵坐标(y),得到毒力回归方程(y=ax + b),计算有效抑制中浓度(EC50值)。

    • 采用Microsoft Excel 2010软件进行数据处理,利用IBM SPSS Statistics 25.0软件进行单因素方差分析,并采用Tukey’s法进行差异显著性分析。

    2.   结果分析
    • 在5~35 ℃条件下病菌均可生长。在不同温度条件下,病菌菌落直径差异明显,其中最适宜菌丝生长温度为20 ℃,第25 d时菌落直径可达4.25 cm,与其它温度下菌落直径差异显著(P<0.05)。低于或高于20 ℃,菌落直径逐渐减小。在不同温度条件下,分生孢子萌发率差异显著(P<0.05)。12 h时,20 ℃下的分生孢子萌发率最大,为79.00%;在5 ℃、10 ℃及15 ℃时,病菌分生孢子的萌发率分别为30.33%、60.67%及66.00%;当温度高于30 ℃时,分生孢子萌发率明显降低,30 ℃时为23.67%,35 ℃时仅为18.33%(图1)。

      Figure 1.  Colony diameter and conidial germination rate of Coryneum populinum under different temperature conditions

      在20 ℃时,病菌在PDA培养基上菌丝生长缓慢,56 d时菌落直径5.90 cm;菌丝体发达,表面呈绒毛状,灰黑色,未见产生分生孢子盘(图2A)。在产孢培养基上,5 d左右可观察到分生孢子;分生孢子梭形,浅褐色,多数2~3个隔,少数4~6个隔,顶端尖,末端钝,中间细胞较大,孢子稍弯曲;分生孢子萌发时,多从顶端或末端(基部)生出芽管(图2B)。30 ℃时,病菌分生孢子萌发率下降,部分分生孢子的细胞异常膨大,芽管从中间细胞萌发,芽管基部或顶端膨大(图2C)。

      Figure 2.  Colony, conidia and conidial germination of Coryneum populinum

    • 试验结果表明,5种供试药剂对C. populinum均有一定的抑制作用。根据不同药剂与病菌生长的毒力回归方程(相关系数r>0.95),表明试验结果可信度较高。不同药剂对病菌菌丝体生长的抑制效果存在显著差异(P<0.05),同一种药剂在不同浓度时对菌丝体生长的抑制效果也存在差异。比较发现,恶醚唑对病菌的毒力最强,EC50值为0.004 8 μg·mL−1;戊唑醇次之,EC50值为0.024 μg·mL−1;多菌灵和咪鲜胺的EC50值分别为0.047、0.25 μg·mL−1;甲基托布津的毒力相对较弱,EC50值为0.49 μg·mL−1表1)。

      药剂
      Fungicide
      浓度
      Concentration/
      (μg·mL−1)
      处理菌落直径
      Diameter of colony on
      fungicide medium/cm
      对照菌落直径
      Control colony
      diameter/cm
      抑制率
      Inhibitory rate/%
      毒力回归方程
      Toxicity regression
      equation
      相关系数r
      Correlation
      coefficient
      EC50值
      EC50 value/(
      μg·mL−1)
      多菌灵
      Carbendazim
      0.08 0.68 ± 0.03 m 1.73 ± 0.06 ab 92.7 ± 2.44 a y=6.085 9x + 13.100 0 0.981 8 0.047
      0.07 0.80 ± 0.00 kl 1.70 ± 0.00 abc 81.8 ± 0.00 bc
      0.06 0.80 ± 0.00 kl 1.65 ± 0.00 abc 81.0 ± 0.00 cd
      0.05 1.12 ± 0.08 d 1.73 ± 0.06 ab 54.5 ± 4.55 hi
      0.04 1.35 ± 0.05 a 1.73 ± 0.06 ab 33.8 ± 2.31 l
      戊唑醇
      Tebuconazole
      0.2 0.68 ± 0.03 m 1.68 ± 0.03 abc 92.3 ± 2.76 a y=1.282 8x + 7.086 1 0.953 6 0.024
      0.1 0.93 ± 0.06 ghi 1.72 ± 0.08 ab 70.3 ± 3.19 ef
      0.05 0.98 ± 0.10 fgh 1.68 ± 0.03 abc 64.6 ± 9.26 fg
      0.025 1.15 ± 0.05 cd 1.68 ± 0.03 abc 49.3 ± 3.52 ij
      0.012 5 1.25 ± 0.05 b 1.70 ± 0.00 abc 40.9 ± 4.55 k
      甲基托布津
      Thiophanate-methyl
      0.9 0.72 ± 0.08 lm 1.60 ± 0.17 c 88.8 ± 6.23 ab y=4.556 2x + 6.421 6 0.981 3 0.49
      0.8 0.82 ± 0.08 jk 1.75 ± 0.05 a 81.3 ± 6.00 bcd
      0.7 0.80 ± 0.05 kl 1.63 ± 0.08 bc 80.6 ± 4.47 cd
      0.6 1.00 ± 0.10 efg 1.72 ± 0.03 ab 64.2 ± 9.14 fg
      0.5 1.15 ± 0.05 cd 1.73 ± 0.06 ab 51.5 ± 2.62 hi
      咪鲜胺
      Prochloraz
      2 0.80 ± 0.00 kl 1.68 ± 0.03 abc 81.5 ± 0.50 bcd y=0.827 4x + 5.495 7 0.956 0 0.25
      1 1.00 ± 0.00 efg 1.68 ± 0.03 abc 63.1 ± 1.00 fg
      0.5 1.07 ± 0.06 def 1.68 ± 0.03 abc 56.9 ± 5.97 ghi
      0.25 1.13 ± 0.06 d 1.68 ± 0.03 abc 50.8 ± 4.75 hi
      0.125 1.23 ± 0.03 bc 1.70 ± 0.00 abc 42.4 ± 2.62 jk
      恶醚唑
      Difenoconazole
      0.1 0.88 ± 0.03 ijk 1.68 ± 0.03 abc 73.9 ± 2.00 de y=0.564 5x + 6.310 7 0.988 0 0.004 8
      0.05 0.90 ± 0.00 hij 1.70 ± 0.00 abc 72.7 ± 0.00 e
      0.025 0.93 ± 0.06 ghi 1.70 ± 0.00 abc 69.7 ± 5.25 ef
      0.01 1.08 ± 0.03 de 1.73 ± 0.06 ab 57.3 ± 2.44 gh
      0.000 5 1.42 ± 0.03 a 1.73 ± 0.06 ab 27.9 ± 1.09 l
      注:表中数据为平均值 ± 标准误,同一列中字母相同表示不同处理差异不显著( P> 0.05);字母不同表示差异显著(P< 0.05).下同
        Notes:Notes: The data in the table are mean ± SE. The same letters in the same column indicate that there is no significant difference between different treatments ( P > 0.05). Different letters indicated significant difference ( P < 0.05).The same below.

      Table 1.  Inhibitory effects of five fungicides on mycelial growth of Coryneum populinum

    • 试验结果表明,5种供试药剂对病菌分生孢子萌发具有不同程度的抑制作用,同一种药剂对分生孢子萌发的抑制率随药剂浓度的增加而增大。根据不同药剂对分生孢子萌发抑制率的毒力回归方程(相关系数r>0.96),表明试验结果可信度较高。恶醚唑对病菌分生孢子萌发的抑制作用最强,EC50值最小,为85.07 μg·mL−1;咪鲜胺、甲基托布津及多菌灵的EC50值分别为101.23、123.28和254.80 μg·mL−1;戊唑醇对分生孢子萌发的抑制作用最差,EC50值为327.78 μg·mL−1表2)。

      药剂
      Fungicide
      浓度
      Concentration/
      (μg·mL−1)
      孢子萌发率
      Spore germination
      rate/%
      抑制率
      Inhibitory
      rate/%
      毒力回归方程
      Toxicity regression
      equation
      相关系数r
      Correlation
      coefficient
      EC50值
      EC50 value/
      (μg·mL−1)
      对照(无菌水)
      Control (sterile water)
      79.00 ± 2.00 a
      多菌灵
      Carbendazim
      350 28.00 ± 1.00 p 64.6 ± 1.14 a y=2.741 8x−1.597 3 0.996 1 254.80
      300 34.00 ± 3.00 n 57.0 ± 3.36 cd
      250 40.33 ± 2.31 lm 49.0 ± 1.89 e
      200 46.67 ± 1.53 jk 40.9 ± 0.55 gh
      150 59.00 ± 1.00 cd 25.3 ± 0.63 mn
      戊唑醇
      Tebuconazole
      350 35.33 ± 1.15 n 55.3 ± 1.88 d y=2.002 6x-0.037 7 0.975 9 327.78
      300 42.67 ± 0.58 l 46.0 ± 0.81 ef
      250 49.67 ± 0.58 ghi 37.1 ± 1.02 hij
      200 52.67 ± 1.15 f 33.3 ± 0.85 jk
      150 58.33 ± 1.53 de 26.2 ± 0.37 mn
      甲基托布津
      Thiophanate-methyl
      120 39.67 ± 0.58 m 49.8 ± 1.93 e y=2.487 6x-0.201 3 0.990 0 123.28
      100 48.00 ± 1.00 ij 39.2 ± 0.27 gh
      80 52.33 ± 1.53 f 33.8 ± 0.42 ijk
      70 58.67 ± 1.15 d 25.7 ± 3.25 mn
      60 61.33 ± 1.53 bc 22.3 ± 3.89 no
      咪鲜胺
      Prochloraz
      120 30.33 ± 1.53 op 61.6 ± 0.99 ab y=3.721 4x-2.462 6 0.994 2 101.23
      100 40.00 ± 1.00 m 49.4 ± 1.29 e
      80 51.33 ± 1.15 fgh 32.2 ± 6.28 kl
      70 56.00 ± 1.00 e 29.1 ± 2.69 lm
      60 63.00 ± 1.00 b 20.2 ± 1.79 o
      恶醚唑
      Difenoconazole
      100 31.33 ± 1.15 o 60.3 ± 1.80 bc y=3.169 3x-1.116 0 0.967 2 85.07
      90 35.67 ± 0.58 n 54.8 ± 1.80 d
      80 45.33 ± 2.52 k 42.6 ± 1.74 fg
      70 49.33 ± 1.53 hi 37.5 ± 1.50 hi
      60 52.00 ± 1.73 fg 34.1 ± 2.79 ijk

        

      Table 2.  Inhibitory effect of five fungicides on conidial germination of Coryneum populinum

    • 与对照相比,添加恶醚唑使C. populinum菌落生长缓慢,菌丝体生长明显受到抑制。随着恶醚唑浓度升高,C. populinum菌落生长直径逐渐减小,药剂对菌丝体生长的抑制率逐渐增大。如恶醚唑0.000 5 μg·mL−1,菌落直径为1.42 cm,抑制率27.9%;0.01 μg·mL−1时,菌落直径为1.08 cm,抑制率57.3%;0.1 μg·mL−1时,菌落直径为0.88 cm,抑制率73.9%(图3)。

      Figure 3.  Effects of different concentrations of Difenoconazole on colony growth of Coryneum populinum (10 d)

      对照中C. populinum菌丝生长粗细均匀,表面光滑,分支正常,产孢正常,芽管从分生孢子顶端或者末端(基部)正常萌发。经恶醚唑作用后,C. populinum菌丝表面变得粗糙、分支处膨大,大多数分生孢子萌发异常,产生的芽管较短,尖端膨大(图4)。

      Figure 4.  Microscopic observation of mycelial growth and conidial germination of Coryneum populinum after treatment with 0.000 5 μg·mL−1 Difenoconazole

    3.   讨论
    • 相比大多数植物病原菌的最适生长温度为25 ℃左右[17-19],杨树灰斑病菌的最适生长温度偏低。高温条件下,C. populinum菌丝体生长极其缓慢,多数分生孢子不萌发或者萌发异常,与其他植物病原真菌生长特性相似[20-21]。不同杀菌剂对C. populinum菌丝体生长的抑制效果存在明显差异,恶醚唑、戊唑醇及多菌灵这3种药剂的抑制作用较强,尤其恶醚唑的抑菌活性最高,EC50值为0.004 8 μg·mL−1,而甲基托布津EC50为0.49 μg·mL−1,二者抑菌活性相差近100倍。由此可见,不同杀菌剂对杨树灰斑病菌菌丝体生长的抑制作用具有一定的选择性。恶醚唑、咪鲜胺及甲基托布津对C. populinum分生孢子萌发的毒力较强,尤其恶醚唑的抑制作用最强,EC50值为85.07 μg·mL−1。综上,恶醚唑对C. populinum菌丝体生长和分生孢子萌发均具有很强的抑制效果,在病菌侵染前期或发病初期使用可以有效控制病害的发生和蔓延。但应注意的是,在病害管理过程中,杀菌剂的使用需兼顾防治效益和抗性治理[10],如低浓度的恶醚唑(0.000 5 μg·mL−1)和多菌灵(0.04 μg·mL−1)对C. populinum的抑制效果不理想,可以进一步考虑药剂复配,延缓抗药性的产生[22-23]

      室内毒力测定试验可以快速和有效分析杀菌剂对病原菌的抑菌效果,是筛选高效杀菌剂的重要依据[24]。本研究所选用的5种药剂均为广谱性杀菌剂,其中多菌灵和甲基托布津属苯并咪唑类杀菌剂,是果蔬等多种作物病害防治中应用最广泛的杀菌剂,这两种杀菌剂的作用机制是通过干扰菌体内DNA的合成,从而影响细胞分裂,阻碍致病菌增殖[25-26]。戊唑醇、咪鲜胺及恶醚唑属于甾醇脱甲基抑制剂类杀菌剂,具有高效性和广谱性等特点,对大部分子囊菌和担子菌具有抑制作用,广泛应用于多种作物病害防治[27-28]。甾醇脱甲基抑制剂类杀菌剂对C. populinum的抑制效果较好,虽然戊唑醇对病菌分生孢子萌发的抑制作用偏低,但对菌丝生长的抑制作用较强,其原因还未明确[29]。赵华等[30]研究发现戊唑醇对Marssonina mali孢子萌发的抑制作用强于恶醚唑,这与本研究结果不同,说明杀菌剂对病菌的抑制效果具有选择性。本试验测定了5种杀菌剂原药对C. populinum的室内毒力,与成品制剂相比,更能明确病菌对杀菌剂本身的敏感性,排除了制剂加工中的填料和助剂对测定结果产生的影响[31]

      恶醚唑作用C. populinum后导致其菌丝表面粗糙、分支处膨大,引起分生孢子两端细胞肿胀,但不萌发芽管,或者芽管从分生孢子中间细胞异常萌发,推断该药剂能够有效阻止C. populinum侵入寄主组织中和在组织中扩展。该研究结果与恶醚唑对Ascochyta caulina分生孢子萌发的抑制作用相似[32]。有关恶醚唑对C. populinum的抑制作用机制还有待进一步研究。本研究仅在室内测定了5种杀菌剂对C. populinum菌丝体生长和分生孢子萌发的毒性,但对在田间的试验效果还有待于进一步分析。

    4.   结论
    • 杨树灰斑病菌C. populinum在5~35 ℃范围内均可生长,最适生长温度为20 ℃,低于或高于最适温度,菌落生长缓慢。30 ℃条件下,多数分生孢子不萌发或者萌发异常。恶醚唑对病菌菌丝生长及分生孢子萌发的抑制作用最强。0.000 5 μg·mL−1恶醚唑作用后,C. populinum菌丝表面粗糙、分支处膨大,分生孢子形态异常,出现芽管分支、膨大或不伸长等畸形特征。

Reference (32)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return