• 中国中文核心期刊
  • 中国科学引文数据库(CSCD)核心库来源期刊
  • 中国科技论文统计源期刊(CJCR)
  • 第二届国家期刊奖提名奖
Volume 36 Issue 6
Dec.  2023
Article Contents
Turn off MathJax

Citation:

Diversity and Structure of Soil Bacterial Communities in Native Broadleaved Plantations and Pinus massoniana Plantation in Southern Subtropical China

  • Corresponding author: QIN Lin, nilniq@gxu.edu.cn
  • Received Date: 2023-05-19
    Accepted Date: 2023-08-18
  • Objective To explore the characteristics of soil bacterial community diversity and structure with the treatment of conversion of coniferous into broadleaved plantations. Method The bacterial 16S rRNA gene high-throughput sequencing was performed on samples of the coniferous Pinus massoniana Lamb plantation (PMP) as well as native broadleaved Castanopsis hystrix Miq. plantation (CHP), Mytilaria laosensis Lec. plantation (MLP) and Michelia macclurei Dandy plantation (MMP) in the southern subtropical China collected from the topsoil (0-20 cm)、middle layer(20-40 cm) and subsoil (40-60 cm) under each stand in February 2017. The diversity and structure of soil bacterial community taxonomy and phylogeny after conversion from PMP to native broadleaved plantations were studied. Results The results showed that: (1) The taxonomic and phylogenetic diversity of bacterial communities in topsoil increased significantly after conversion from PMP to MLP and MMP, which mainly caused by the soil water content (SWC). (2) After CHP, MLP and MMP replaced PMP, the taxonomic structure of topsoil bacterial community changed markedly, and only CHP changed significantly in the middle layer, which were limited by soil SWC, total phosphorus (TP), total nitrogen (TN) and carbon-nitrogen ratio (C/N). (3) After the transformation from PMP to native broadleaved plantations, the phylogenetic structure of bacterial community remains clustered in vas soil layers, and environmental filtration was still the main factor regulating community assembly. (4) In the topsoil and middle layer, the taxonomic and phylogenetic turnover rates from PMP to CHP were higher than that from PMP to MLP or MMP, indicating that stability of the soil bacterial community in the CHP stand was poor. Conclusion Overall, considering the diversity and turnover rates of soil bacterial community taxonomy and phylogeny, the stability of the soil bacterial community after converting PMP into MLP or MMP is higher than that after converting to CHP.
  • 加载中
  • [1]

    GUO J F, YANG Z J, LIN C F, et al. Conversion of a natural evergreen broadleaved forest into coniferous plantations in a subtropical area: effects on composition of soil microbial communities and soil respiration[J]. Biology and Fertility of Soils, 2016, 52(6): 799-809. doi: 10.1007/s00374-016-1120-x
    [2]

    ZHOU L, SUN Y J, SAEED S, et al. The difference of soil properties between pure and mixed Chinese fir ( Cunninghamia lanceolata ) plantations depends on tree species[J]. Global Ecology and Conservation, 2020, 22: e01009. doi: 10.1016/j.gecco.2020.e01009
    [3] 刘世荣, 杨予静, 王 晖. 中国人工林经营发展战略与对策: 从追求木材产量的单一目标经营转向提升生态系统服务质量和效益的多目标经营[J]. 生态学报, 2018, 38(1):1-10.

    [4] 王露莹, 孙慧珍, 杨 雪. 松花江下游滨岸带典型植被根际土壤细菌群落结构与功能多样性[J]. 环境科学, 2022, 43(4):2182-2191.

    [5]

    PRESCOTT C E, GRAYSTON S J. Tree species influence on microbial communities in litter and soil: Current knowledge and research needs[J]. Forest Ecology and Management, 2013, 309(4): 19-27.
    [6]

    HIPP A L, LARKIN D J, BARAK R S, et al. Phylogeny in the service of ecological restoration[J]. American Journal of Botany, 2015, 102(5): 647-648. doi: 10.3732/ajb.1500119
    [7]

    LI S F, HUANG X B, LANG X D, et al. Cumulative effects of multiple biodiversity attributes and abiotic factors on ecosystem multifunctionality in the Jinsha River valley of southwestern China[J]. Forest Ecology and Management, 2020, 472: 118281. doi: 10.1016/j.foreco.2020.118281
    [8]

    YU Q S, RAO X Q, OUYANG S N, et al. Changes in taxonomic and phylogenetic dissimilarity among four subtropical forest communities during 30 years of restoration[J]. Forest Ecology and Management, 2019, 432: 983-990. doi: 10.1016/j.foreco.2018.10.033
    [9] 梁 艳, 明安刚, 何友均, 等. 南亚热带马尾松-红椎混交林及其纯林土壤细菌群落结构与功能[J]. 应用生态学报, 2021, 32(3):878-886. doi: 10.13287/j.1001-9332.202103.37

    [10]

    TRIPATHI B M, STEGEN J C, KIM M, et al. Soil pH mediates the balance between stochastic and deterministic assembly of bacteria[J]. Isme Journal, 2018, 12(4): 1072-1083. doi: 10.1038/s41396-018-0082-4
    [11]

    ZHAO P, LIU J, JIA T, et al. Environmental filtering drives bacterial community structure and function in a subalpine area of northern China[J]. Journal of Basic Microbiology, 2019, 59(3): 337-347. doi: 10.1002/jobm.201800314
    [12]

    GOBERNA M, NAVARRO-CANO J A, VALIENTE-BANUET A, et al. Abiotic stress tolerance and competition‐related traits underlie phylogenetic clustering in soil bacterial communities[J]. Ecology Letters, 2014, 17(10): 1191-1201. doi: 10.1111/ele.12341
    [13]

    CAO J L, ZHENG Y X, YANG Y S. Phylogenetic structure of soil bacterial communities along age sequence of subtropical Cunninghamia lanceolata plantations[J]. Sustainability, 2020, 12(5): 1864. doi: 10.3390/su12051864
    [14]

    ZHANG X, LIU S, LI X Z, et al. Changes of soil prokaryotic communities after clear-cutting in a karst forest: evidences for cutting-based disturbance promoting deterministic processes[J]. FEMS Microbiology Ecology, 2016, 92(3): fiw026. doi: 10.1093/femsec/fiw026
    [15] 丛 微, 于晶晶, 喻海茫, 等. 不同气候带森林土壤微生物多样性和群落构建特征[J]. 林业科学, 2022, 58(2):70-79.

    [16]

    LI X Y, SUN J, WANG H H, et al. Changes in the soil microbial phospholipid fatty acid profile with depth in three soil types of paddy fields in China[J]. Geoderma, 2017, 290: 69-74. doi: 10.1016/j.geoderma.2016.11.006
    [17] 张建龙. 中国森林资源报告[M]. 北京: 中国林业出版社, 2019.

    [18]

    HE Y J, QIN L, LI Z Y, et al. Carbon storage capacity of monoculture and mixed-species plantations in subtropical China[J]. Forest Ecology and Management, 2013, 295: 193-198. doi: 10.1016/j.foreco.2013.01.020
    [19] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.

    [20]

    QUINCE C, LANZEN A, DAVENPORT R J, et al. Removing noise from pyrosequenced amplicons[J]. BMC Bioinformatics, 2011, 12: 38. doi: 10.1186/1471-2105-12-38
    [21] 彭 雯, 谭 玲, 明安刚, 等. 南亚热带典型人工纯林土壤剖面细菌群落组成差异分析[J]. 土壤通报, 2018, 49(6):1361-1369. doi: 10.19336/j.cnki.trtb.2018.06.14

    [22]

    PRICE M N, DEHAL P S, ARKIN A P. FastTree 2-approximately maximum-likelihood trees for large alignments[J]. PLoS One, 2010, 5(3): e9490. doi: 10.1371/journal.pone.0009490
    [23]

    FAITH D P. Conservation evaluation and phylogenetic diversity[J]. Biological Conservation, 1992, 61(1): 1-10. doi: 10.1016/0006-3207(92)91201-3
    [24]

    CHASE J M, KRAFT N J B, SMITH K G, et al. Using null models to disentangle variation in community dissimilarity from variation in α-diversity[J]. Ecosphere, 2011, 2(2): 1-11.
    [25]

    WEBB C O. Exploring the phylogenetic structure of ecological communities: an example for rain forest trees[J]. The American Naturalist, 2000, 156(2): 145-155. doi: 10.1086/303378
    [26]

    WEBB C O, ACKERLY D D, KEMBEL S W. Phylocom: software for the analysis of phylogenetic community structure and trait evolution[J]. Bioinformatics, 2008, 24(18): 2098-2100. doi: 10.1093/bioinformatics/btn358
    [27]

    NANNIPIERI P, ASCHER J, CECCHERINI M T, et al. Microbial diversity and soil functions[J]. European Journal of Soil Science, 2017, 68(1): 12-26. doi: 10.1111/ejss.4_12398
    [28]

    KASCHUK G, ALBERTON O HUNGRIA M. Quantifying effects of different agricultural land uses on soil microbial biomass and activity in Brazilian biomes: inferences to improve soil quality[J]. Plant and Soil, 2011, 338(1/2): 467-481.
    [29]

    QIU Z L, SHI C, ZHAO M Y, et al. Improving effects of afforestation with different forest types on soil Nutrients and bacterial community in barren hills of north China[J]. Sustainability, 2022, 14(3): 1202. doi: 10.3390/su14031202
    [30]

    DENG J J, ZHANG Y, YIN Y, et al. Comparison of soil bacterial community and functional characteristics following afforestation in the semi-arid areas[J]. PeerJ., 2019, 7: e7141. doi: 10.7717/peerj.7141
    [31] 刘子涵, 黄方园, 黎景来, 等. 覆盖模式对旱作农田土壤微生物多样性及群落结构的影响[J]. 生态学报, 2021, 41(7):2750-2760.

    [32]

    de CÁRCER D A. A conceptual framework for the phylogenetically constrained assembly of microbial communities[J]. Microbiome, 2019, 7: 142. doi: 10.1186/s40168-019-0754-y
    [33]

    ZHANG X, HUANG Y T, LIU S R, et al. Mixture of tree species enhances stability of soil bacterial community through phylogenetic diversity[J]. European Journal of Soil Science, 2019, 70(3): 644-654. doi: 10.1111/ejss.12780
    [34]

    VOS M, WOLF A B, JENNINGS S J, et al. Micro-scale determinants of bacterial diversity in soil[J]. FEMS Microbiology Reviews, 2013, 37(6): 936-954. doi: 10.1111/1574-6976.12023
    [35]

    TAKETANI R G, LANCONI M D, KAVAMURA V N, et al. Dry season constrains bacterial phylogenetic diversity in a semi-arid rhizosphere system[J]. Microbial Ecology, 2017, 73(1): 153-161. doi: 10.1007/s00248-016-0835-4
    [36]

    FERRENBERG S, O'NEILL S P, KNELMAN J E, et al. Changes in assembly processes in soil bacterial communities following a wildfire disturbance[J]. The ISME Journal, 2013, 7(6): 1102-1111. doi: 10.1038/ismej.2013.11
    [37]

    GUNINA A, SMITH A R, GODBOLD D L, et al. Response of soil microbial community to afforestation with pure and mixed species[J]. Plant and Soil, 2017, 412(1-2): 357-368. doi: 10.1007/s11104-016-3073-0
    [38] 张 晓, 刘世荣, 黄永涛, 等. 辽东栎林演替过程中的土壤细菌群落结构和多样性变化[J]. 林业科学, 2019, 55(10):193-202.

    [39] 陈秀波, 朱德全, 赵晨晨, 等. 凉水国家自然保护区不同林型红松林土壤nosZ型反硝化微生物群落组成和多样性分析[J]. 林业科学, 2019, 55(8):106-117. doi: 10.11707/j.1001-7488.20190812

    [40]

    WAN P, HE R R. Soil microbial community characteristics under different vegetation types at the national nature reserve of Xiaolongshan Mountains, Northwest China[J]. Ecological Informatics, 2020, 55: 101020. doi: 10.1016/j.ecoinf.2019.101020
    [41] 邓娇娇, 周永斌, 殷 有, 等. 辽东山区典型人工针叶林土壤细菌群落多样性特征[J]. 生态学报, 2019, 39(3):997-1008.

    [42]

    HORODECKI P, JAGODZINSKI A M. Tree species effects on litter decomposition in pure stands on afforested post-mining sites[J]. Forest Ecology and Management, 2017, 406: 1-11. doi: 10.1016/j.foreco.2017.09.059
    [43]

    WU X G, WANG Y, ZHU Y, et al. Variability in the response of bacterial community assembly to environmental selection and biotic factors depends on the immigrated bacteria, as revealed by a soil microcosm experiment[J]. Msystems, 2019, 4(6): e00496-19.
    [44]

    DALEO P, ALBERTI J, JUMPPONEN A, et al. Nitrogen enrichment suppresses other environmental drivers and homogenizes salt marsh leaf microbiome[J]. Ecology, 2018, 99(6): 1411-1418. doi: 10.1002/ecy.2240
    [45]

    FENG Y, GUO Z, ZHONG L, et al. Balanced fertilization decreases environmental filtering on soil bacterial community assemblage in north China[J]. Frontiers in Microbiology, 2017, 8: 2376. doi: 10.3389/fmicb.2017.02376
    [46]

    FREEDMAN Z, ZAK D R. Soil bacterial communities are shaped by temporal and environmental filtering: evidence from a long-term chronosequence[J]. Environmental Microbiology, 2015, 17(9): 3208-3218. doi: 10.1111/1462-2920.12762
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6) / Tables(2)

Article views(2582) PDF downloads(67) Cited by()

Proportional views

Diversity and Structure of Soil Bacterial Communities in Native Broadleaved Plantations and Pinus massoniana Plantation in Southern Subtropical China

    Corresponding author: QIN Lin, nilniq@gxu.edu.cn
  • 1. Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, Guangxi, China
  • 2. Experiment Center of Tropical Forestry, Chinese Academy of Forestry, Pingxiang 532600, Guangxi, China
  • 3. Guangxi Youyiguan Forest Ecosystem Research Station, Pingxiang 532600, Guangxi, China

Abstract:  Objective To explore the characteristics of soil bacterial community diversity and structure with the treatment of conversion of coniferous into broadleaved plantations. Method The bacterial 16S rRNA gene high-throughput sequencing was performed on samples of the coniferous Pinus massoniana Lamb plantation (PMP) as well as native broadleaved Castanopsis hystrix Miq. plantation (CHP), Mytilaria laosensis Lec. plantation (MLP) and Michelia macclurei Dandy plantation (MMP) in the southern subtropical China collected from the topsoil (0-20 cm)、middle layer(20-40 cm) and subsoil (40-60 cm) under each stand in February 2017. The diversity and structure of soil bacterial community taxonomy and phylogeny after conversion from PMP to native broadleaved plantations were studied. Results The results showed that: (1) The taxonomic and phylogenetic diversity of bacterial communities in topsoil increased significantly after conversion from PMP to MLP and MMP, which mainly caused by the soil water content (SWC). (2) After CHP, MLP and MMP replaced PMP, the taxonomic structure of topsoil bacterial community changed markedly, and only CHP changed significantly in the middle layer, which were limited by soil SWC, total phosphorus (TP), total nitrogen (TN) and carbon-nitrogen ratio (C/N). (3) After the transformation from PMP to native broadleaved plantations, the phylogenetic structure of bacterial community remains clustered in vas soil layers, and environmental filtration was still the main factor regulating community assembly. (4) In the topsoil and middle layer, the taxonomic and phylogenetic turnover rates from PMP to CHP were higher than that from PMP to MLP or MMP, indicating that stability of the soil bacterial community in the CHP stand was poor. Conclusion Overall, considering the diversity and turnover rates of soil bacterial community taxonomy and phylogeny, the stability of the soil bacterial community after converting PMP into MLP or MMP is higher than that after converting to CHP.

  • 为了满足木材、燃料和其它林产品的需求,将天然阔叶林改造成速生丰产的人工针叶林是过去几十年里中国南方普遍采用的经营策略[1]。然而,大面积多代连栽的针叶林极易造成一系列严重的生态环境问题(如土壤侵蚀、肥力衰退和生态系统稳定性降低等),最终导致人工林生产力的不断下降[2]。如何科学培育人工林,有效提高其生产力并维持生物多样性,是人工林多目标经营亟需解决的关键问题。有研究表明,将现存的大面积低质低效针叶纯林转化为经济价值、生产力和物种多样性高的乡土阔叶树种人工林,将会改变土壤理化性质和养分循环,有助于提高土壤肥力[3]。将针叶林改造成乡土阔叶林,是近年来我国最有前景的人工林经营模式之一。

    土壤细菌群落是陆地生态系统中最多样化和最主要的微生物群落,对生态系统营养物质循环、分解有机质及维持土壤肥力等具有关键效用[4]。凋落物与根系分泌物能为土壤细菌生命活动提供所需要的碳源,因而不同树种可直接引起土壤细菌群落组成多样性的变化[5]。土壤细菌群落多样性包括分类和系统发育两方面。传统的分类多样性仅仅量化物种名称和丰度变化,没有传达有关物种的生态和系统发育的关键信息,无法解释群落动态,因此系统发育多样性的变化越来越受到人们的关注[6]。系统发育多样性反应了群落内物种之间的系统发育距离和作用,有助于估计生物多样性对生态系统功能的影响[7]。群落结构是物种在不同空间尺度上相互作用的结果,量化物种分布模式的空间差异可以深入了解调控物种多样性形成的机制以及群落趋同、转换率等群落状态[8]。有研究表明,中国南方地区的针叶林和阔叶林的土壤细菌群落分类结构差异显著[9]。目前,生态位理论和中性理论分别代表了群落构建的确定性过程(环境过滤和竞争排斥)和随机性过程(不可预测的干扰、扩散、出生和死亡)[10]。有学者使用群落分类结构的Raup-Crick相异指数(βRC)探究群落构建过程,发现环境过滤是中国华北亚高山林线区域土壤细菌群落构建驱动因素[11]。同时,通过系统发育结构也可以反映群落构建过程中物种的进化历史,若由环境过滤主导,则筛选出适应能力相似、亲缘关系较近的物种,导致系统发育聚类;若由竞争排斥主导,则生态位相似的物种将无法共存,导致系统发育过度分散[12]。至今关于森林土壤细菌群落系统发育结构的研究结果不一。有研究认为,森林土壤(0~10 cm)细菌群落系统发育结构是聚集的,群落构建由确定性过程决定,主要受环境过滤影响[13-14];但也有研究指出,确定性过程和随机性过程共同作用于森林土壤(0~20 cm)细菌群落构建,其中确定性过程占主要作用[15]。另外,土壤细菌对生物地球化学循环过程的影响在整个土壤剖面中一直存在[16],且不同土层深度的土壤理化性质不同[9],或许会导致不同的细菌群落分布模式。然而,现有的研究仅仅考虑了森林表层土壤(0~20 cm)细菌群落构建机制,对于人工林深层土壤(>20 cm)的细菌群落如何构建知之甚少。

    我国亚热带地区人工林的面积和蓄积均居全国之首[17]。用红锥(Castanopsis hystrix Miq.)、米老排(Mytilaria laosensis Lec.)和火力楠(Michelia macclurei Dandy)等珍贵乡土阔叶林更替杉木(Cunninghamia lanceolata (Lamb.) Hook.)和马尾松(Pinus massoniana Lamb)等针叶林是目前该地区常见的营林模式。针叶林改建成阔叶林后,其凋落物数量与质量的改变将会对土壤理化性质产生作用,进而会影响土壤细菌群落多样性和结构。本研究以南亚热带地区杉木林采伐迹地种植的马尾松、红锥、米老排和火力楠等人工林为对象,基于各林分不同土层(0~20、20~40和40~60 cm)细菌16S rRNA高通量测序数据,旨在通过差异性分析推测未来在马尾松林采伐后种植乡土阔叶林情况下土壤细菌群落的分类与系统发育多样性和结构依土层的变化特征,以及导致变化的主要土壤理化因子。研究结果不仅对针叶林改建乡土阔叶林的树种选择具有指导作用,还为阐明亚热带人工林土壤剖面细菌群落构建机制提供科学依据。

    • 研究区为中国林业科学研究院热带林业实验中心伏波林场(22°10′ N, 106°50′ E),位于广西壮族自治区凭祥市。该区域干湿两季分明(雨季为4月—9月,旱季为10月—次年3月),属于南亚热带湿润-半湿润季风性气候。年均降雨量维持在1 200~1 500 mm,年均蒸发量1 325 mm,年均气温21 ℃。研究地区以低山丘陵的地貌类型为主,海拔高度为130~1 045 m,地带性土壤为花岗岩发育的山地红壤[18]

      2017年2月在该区域选取具有立地条件(土壤类型、海拔、坡度、坡向)和经营措施相似的马尾松、红锥、米老排和火力楠等4个乡土树种人工林为对象。4个人工林均是在杉木采伐迹地上种植(密度为2 500 株·hm−2);其中,马尾松林和红锥林于1983年营造并经过了3次间伐,而米老排林和火力楠林于1981年营建并经历2次间伐,间伐强度约30%。在各林分内,随机设置3个20 m × 20 m的样地(样地间距20 m以上),在每个样地内沿左对角线任意选择3个采样点,用土钻(内径5.0 cm)分别采集表层(0~20 cm)、中层(20~40 cm)和底层(40~60 cm)土样,除去动植物残体与石块等杂质后,将同层土样混合成一个土样装入无菌采样袋,置于内含生物冰袋的泡沫箱中并带回实验室。新鲜混合土样过2 mm钢筛后分为3份:1份置于−80 ℃的冰箱内冷藏,用于土壤DNA提取;1份置于冰箱4 ℃保存,用于测定土壤硝态氮和铵态氮含量;1份经自然风干后过0.25 mm筛保存用于测定土壤基本化学性质。各林分的立地条件和基本特征见表1

      林分类型
      Stand type
      海拔
      Altitude/m
      坡度
      Slope gradient/(°)
      坡向
      Slope aspect
      胸径
      DBH/cm
      树高
      Tree height/m
      林分密度/(株·hm−2
      Stand density
      马尾松林 PMP54031Southwest27.518.5435
      红锥林 CHP53030South24.7(I)
      10.2(II)
      18.8(I)
      8.5(II)
      340(I)
      612(II)
      米老排林 MLP55030Northeast19.219.71208
      火力楠林 MMP55035Northeast17.4181225
      注:(I):主林层;(II):次林层
        Notes: (I): Main forest layer; (II): Secondary forest layer

      Table 1.  Site conditions and stand characteristics of the four planted forests

    • 参照鲁如坤[19]测定如下指标:烘干法测定土壤含水量(SWC);pH计(Prtavo 907 MULTI pH,德国)测定土壤pH值(土∶水=1∶2.5);重铬酸钾法测定土壤有机碳(SOC)含量;酚二磺酸比色法测定硝态氮(NO3--N)含量;扩散法测定铵态氮(NH4+-N)含量;双酸浸提-钼锑抗比色法测定速效磷(AP)含量。经H2SO4与HClO4消煮后,使用全自动间断化学元素分析仪SmartChem200(Alliance,法国)测定总氮(TN)和总磷(TP)含量;土壤有机碳与总氮含量的比值即土壤碳氮比(C/N)。

      土壤DNA使用PowerSoil®DNA Isolation Kit试剂盒(美国MoBio公司)提取。提取到的土壤DNA纯度和浓度通过紫外微量分光光度计(Thermo Nano Drop 2000)进行测定。以515F(5′-GTGCCAGCMGCCGCGGTAA-3′)/926R(5′-CCGTCAATTCMTTTGAGTTT-3′)为引物[20],通过PCR扩增技术进行细菌16S rRNA V4-V5区基因片段的扩增。两次PCR扩增的条件和反应体系见彭雯等[21]。对PCR产物进行2%琼脂糖凝胶电泳检测,使用美国AXYGEN公司的AxyPrepDNA凝胶回收试剂盒对凝胶进行回收纯化,通过FTC-3000TM real-time PCR仪实现胶回收产物的荧光定量,均一化处理后测序文库构建结束。由上海微基生物科技有限公司通过Illumina Miseq 2x300 bp完成高通量测序。

      根据barcode信息对高通量测序得到的原始序列进行拼接、质量控制和过滤。有效序列拼接由FLASH软件完成,质控和过滤由Trimmomatic软件实现,优化序列通过Mothur V.1.33.3软件获得。对优化序列基于97%相似水平的聚类由UPARSE软件完成,生成OTU(operational taxonomic unit)的特征序列,用UCHIME软件检测和去除嵌合体序列,使用Mothur(classify.seqs)软件比对OTU特征序列与Silva(Release123, http://www.arb-silva.de)数据库后进行物种注释(置信度阈值设置为0.8)。

      以最低样本测序深度17 291为基准进行抽平,结果用于后续分析。采用最大似然法构建系统发育树,在QIIME2 2021.8软件中的FASTTREE程序完成[22]

    • 采用Chao1、Shannon和Simpson指数反映细菌群落的分类多样性;PD指数[23]表征系统发育多样性,其数值大小取决于物种共同祖先的多寡(即系统发育树的节点数量)。

    • 利用基于Bray-Cruits距离的主坐标分析(PCoA)和置换多元方差分析(PERMANOVA)检测不同林分土壤细菌群落分类结构之间的差异,并用Monte Carlo检验理化性质的显著性。用Raup-Crick相异指数(βRC)表示两个群落之间的分类结构相异程度,其取值范围为[−1,1],可表征群落的构建过程[24]。使用净亲缘关系指数(NRI)和最近亲缘关系指数(NTI)量化系统发育结构[25],从而揭示群落构建机制。

    • 为了测量不同林分土壤细菌群落分类和系统发育的空间动态变化,使用Bray-Cruits距离表征群落分类转换率,使用丰度加权的平均成对系统发育距离(βMPD)和平均最近相邻系统发育距离(βMNTD)量化群落系统发育转换率[26]。以上分析均在R软件中进行。

    • 采用单因素方差分析(One-way ANOVA)及多重比较(Tukey)判定相同土层不同林分之间土壤理化性质、细菌群落的分类与系统发育多样性以及分类与系统发育转化率的差异。采用Pearson相关方法,探讨土壤理化性质与分类和系统发育多样性之间的相关性。利用SPSS 26.0软件(SPSS, Inc, Chicago, IL)完成计算。

    2.   结果与分析
    • 方差分析表明(表2),就相同土层不同林分而言,在土壤表层,马尾松林的SWC显著低于米老排林和火力楠林;在中层,马尾松林的SWC显著低于米老排林和火力楠林以及TN显著低于火力楠林,但其pH和NO3-N均显著高于红锥林和米老排林;在底层,马尾松林的pH显著高于火力楠林,而其NO3-N显著高于红锥林和米老排林(P<0.05)。土壤SOC、NH4+-N、TP、AP及C/N在相同土层不同林分间均无显著差异(P>0.05)。

      土层
      Soil
      layer
      林分类型
      Stand
      type
      含水量
      SWC/
      %
      pH有机碳
      SOC/
      (g·kg−1)
      总氮
      TN/
      (g·kg−1)
      硝态氮
      NO3-N/
      (mg·kg−1)
      铵态氮
      NH4+-N/
      (mg·kg−1)
      总磷
      TP/
      (g·kg−1)
      速效磷
      AP/
      (mg·kg−1)
      碳氮比
      C/N
      0~
      20 cm
      PMP19.74 ± 0.54 c4.15 ± 0.04 a20.06 ± 0.37 a1.45 ± 0.28 a5.98 ± 1.44 a12.52 ± 0.13 a2.16 ± 0.22 a35.85 ± 8.62 a15.07 ± 3.37 a
      CHP20.73 ± 0.18 c3.91 ± 0.10 a21.92 ± 1.11 a1.53 ± 0.34 a2.66 ± 0.09 a12.48 ± 0.05 a0.97 ± 0.03 a32.81 ± 3.14 a15.75 ± 3.31 a
      MLP27.74 ± 1.0 a4.03 ± 0.07 a25.64 ± 2.42 a1.97 ± 0.10 a4.10 ± 0.66 a12.20 ± 0.21 a1.38 ± 0.52 a31.03 ± 4.56 a13.22 ± 1.90 a
      MMP23.97 ± 0.16 b3.88 ± 0.01 a20.83 ± 1.34 a2.36 ± 0.19 a3.52 ± 1.20 a12.52 ± 0.13 a1.65 ± 0.08 a41.41 ± 4.65 a8.96 ± 1.03 a
      20~
      40 cm
      PMP19.62 ± 0.20 b4.26 ± 0.01 a13.98 ± 1.14 a0.98 ± 0.13 b3.65 ± 0.46 a12.67 ± 0.05 a1.72 ± 0.46 a28.58 ± 2.75 a14.50 ± 0.73 a
      CHP19.14 ± 0.83 b4.08 ± 0.05 b16.15 ± 1.07 a0.80 ± 0.454 b1.41 ± 0.11 b12.64 ± 0.15 a1.15 ± 0.28 a19.61 ± 3.99 a20.50 ± 2.58 a
      MLP25.00 ± 0.62 a4.08 ± 0.03 b16.88 ± 3.06 a1.03 ± 0.12 ab2.02 ± 0.32 b12.39 ± 0.12 a0.96 ± 0.03 a22.75 ± 3.91 a16.63 ± 3.10 a
      MMP23.15 ± 0.06 a3.93 ± 0.04 b16.64 ± 1.97 a1.45 ± 0.08 a2.87 ± 0.40 ab12.35 ± 0.33 a1.07 ± 0.09 a24.97 ± 2.35 a11.59 ± 1.71 a
      40~
      60 cm
      PMP19.82 ± 0.14 ab4.35 ± 0.00 a10.37 ± 0.96 a0.76 ± 0.16 a2.71 ± 0.56 a12.60 ± 0.08 a1.12 ± 0.28 a21.65 ± 4.56 a14.69 ± 2.58 a
      CHP18.89 ± 0.86 b4.19 ± 0.02 a11.32 ± 1.23 a0.53 ± 0.13 a1.03 ± 0.13 b12.65 ± 0.20 a1.70 ± 0.49 a14.79 ± 2.25 a23.62 ± 5.27 a
      MLP23.02 ± 1.48 a4.20 ± 0.07 a13.94 ± 2.52 a0.65 ± 0.08 a1.27 ± 0.07 b12.82 ± 0.13 a0.96 ± 0.25 a10.85 ± 0.94 a21.28 ± 1.40 a
      MMP22.59 ± 0.19 ab3.97 ± 0.05 b13.13 ± 2.29 a0.80 ± 0.14 a1.70 ± 0.13 ab12.49 ± 0.19 a1.54 ± 0.63 a19.27 ± 1.43 a17.79 ± 5.00 a
      注:不同小写字母表示同一土层不同林分之间差异显著(P<0.05)。下同
        Notes: Different capital letters mean significant difference at 0.05 level between different stands in the same soil layer. The same below

      Table 2.  Physical and chemical properties of soil in four plantations (mean ± SE, n=3)

    • 方差分析表明,在土壤表层,马尾松林的Chao1、PD指数显著低于米老排林和火力楠林(P<0.05),而与红锥林差异不显著(P>0.05)(图1A、D),其中,相较于马尾松林,米老排林的Chao1、PD指数分别提高了20.5%和20.7%,火力楠林则提高了23.8%和20.6%;马尾松林与3乡土阔叶林的Shannon和Simpson指数均无显著差异(图1B、C)。在中层和底层,马尾松林与3个乡土阔叶林的分类和系统发育多样性指数均无显著差异(P>0.05)(图1)。

      Figure 1.  Taxonomic and phylogenetic diversity of soil bacterial communities in four plantations (mean ± SE, n=3)

      土壤理化性质与土壤细菌群落多样性指数的Pearson相关性分析表明(图2),Chao1和PD在表层分别与SWC显著正相关;在中层分别与TN显著正相关且与C/N显著负相关;在底层均与9个理化因子无显著相关性。Shannon和Simpson在表层与NO3-N呈显著负相关,且Simpson还与C/N显著正相关;在中层分别与C/N呈显著负相关;在底层,Simpson与pH显著负相关(P<0.05),而Shannon与9个理化因子均无显著性相关。

      Figure 2.  Correlation heatmap of the soil physicochemical properties and bacterial community diversity (taxonomic and phylogenetic) in all plantations

    • 在土壤表层,主坐标分析(PCoA)细菌群落分类结构总解释度为54.4%(图3),PERMANOVA分析显示马尾松林分别与红锥林(Fpseudo=3.1,P=0.017)、米老排林(Fpseudo=2.9,P=0.025)、火力楠林(Fpseudo=2.0,P=0.039)有显著差异。dbRDA结果表征(图4),前两轴累计解释了58.2%的样品细菌群落分类结构与土壤理化性质因子的关系;马尾松林土壤样品位于RDA2的负方,而红锥林、米老排林和火力楠林土壤样品几乎位于RDA2的正方;Monte Carlo检验进一步表明,土壤TP、SWC、TN是制约马尾松林与红锥林、米老排林、火力楠林土壤细菌群落分类结构差异的环境因素(P<0.05)。

      Figure 3.  Principal Coordinate Analysis (PCoA) of soil bacterial community taxonomic structure between Pinus massoniana plantation and three broadleaved plantations

      Figure 4.  Redundancy analysis (RDA) on effects of soil physical and chemical properties on bacterial community taxonomic structure of four plantations

      在中层,PCoA1和PCoA2的解释度分别为32.1%和18.7%(图3),且PERMANOVA分析表明马尾松林仅与红锥林有显著差异(Fpseudo=2.3,P=0.012)。dbRDA分析表明(图4),dbRDA1解释度为36.3%,dbRDA2解释度为21.3%;马尾松林土壤样品处于RDA1的负侧,而红锥林土壤样品处于RDA1的正侧;Monte Carlo检验揭示土壤C/N是制约马尾松林与红锥林土壤细菌群落分类结构差异的环境因素(P<0.05)。

      在底层,PCoA分析的前两轴累计解释度为48.2%(图3),PERMANOVA发现马尾松林与3个阔叶林均无显著差异(P>0.05)。dbRDA前两轴的总解释度为51.3%(图4),Monte Carlo检验表明土壤NO3-N和SWC是影响不同土壤样品细菌群落分类结构差异的主要因素(P<0.05)。

      另外,相同土层相同林分的两两土壤样品之间的βRC均为−1,意指环境过滤在4个人工林不同土层的细菌群落构建中均起主导作用。

    • 4个林分在各土层的细菌群落净亲缘关系指数NRI(图5A)和最近亲缘关系指数NTI(图5B)均大于1.96,表现为系统发育聚集,说明确定性过程在土壤细菌群落构建中起重要作用,环境过滤导致系统发育聚类。

      Figure 5.  Phylogenetic structure index of bacterial communities in the four plantations at different soil depths (mean ± SE, n=3)

    • 马尾松林转换为3个阔叶林的土壤细菌群落分类转换率的差异因土层不同(图6A)。在0~40 cm土层,马尾松林转换为红锥林的转换率显著高于转换为米老排林和火力楠林;在40~60 cm,马尾松林转换为红锥林和米老排林的转换率均显著高于转换为火力楠林(P<0.05)。

      Figure 6.  Taxonomic and phylogenetic turnover rates of soil bacterial communities from PMP to three broadleaved plantations

    • 土壤细菌群落平均系统发育相异指数βMPD图6B)和最近系统发育相异指数βMNTD图6C)的方差分析表明,在土壤表层,马尾松林转换为红锥林的βMPD显著大于转换为火力楠林(P<0.05),而马尾松林分别转换为3个阔叶林的βMNTD无显著差异(P>0.05);在中层,马尾松林转换为红锥林的βMPD和βMNTD都显著大于转换米老排林和火力楠林(P<0.05);在底层,马尾松林转换为3个阔叶林的βMPD、βMNTD均无显著差异。

    3.   讨论
    • 土壤细菌群落分类多样性是表征细菌在生态系统中功能的重要指标[27],分类多样性越高,则越有利于土壤的可持续利用和抵抗力[28]。有研究指出,树种变化是影响土壤细菌群分类多样性的原因[29-30]。由于针叶与阔叶树种的凋落物和根系对土壤传输的养分不同,改变了土壤理化性质,从而影响土壤细菌群落分类多样性。本研究发现,米老排林和火力楠林相比于马尾松林,土壤表层的细菌群落Chao1指数有显著提高(图1A),而中层和底层土壤细菌群落的分类多样性(Chao1、Shannon和Simpson指数)没有明显差异,说明树种转换导致土壤细菌群落分类多样性的变化也会因土壤深度而异。米老排林和火力楠林表层土壤细菌群落Chao1指数高于马尾松林,其原因在于其表层土壤SWC显著高于马尾松林(表2),而表层土壤细菌群落Chao1指数与土壤SWC显著正相关(图2A)。细菌在相对较高的水势环境下活性更高[31],SWC高的土壤能够为土壤细菌的生长提供了一个稳定而潮湿的环境促进其生长繁殖。

      系统发育多样性可以表示物种的差异性和生态位[32],系统发育多样性越高的生态系统越稳定,且群落中的细菌相互作用越弱[33]。细菌以非常小的尺度(very small scale)栖息在土壤生态位中,其系统发育多样性通常与土壤理化性质密切相关[34]。本研究发现,系统发育多样性与分类多样性呈相同的分布规律,即相较于马尾松林,米老排林和火力楠林表层土壤细菌群落系统发育多样性有显著增加(图1D),而中层和底层无明显变化。Taketani等[35]研究指出,土壤SWC对细菌群落系统发育多样性具有至关重要的作用,土壤SWC降低会直接引起系统发育多样性减少。本研究也发现4个林分土壤表层SWC与PD极显著正相关(P<0.01,图2A),因此,于马尾松林而言,米老排林和火力楠林表层土壤SWC的显著增加是导致细菌群落系统发育多样性显著提高的主要缘由。尽管土壤pH值被普遍认为是影响土壤细菌群落系统发育多样性的重要因素[36],但由于本研究中红锥林、米老排林、火力楠林和马尾松林表层土壤的pH值无显著差异(3.88~4.15),因而未发现土壤pH值对土壤细菌群落系统发育多样性产生明显影响。

    • 针叶林与阔叶林的土壤细菌群落分类结构不同[30],这是多种环境因子综合作用的结果。Gunina等[37]研究表明,造林树种不同导致其土壤理化性质差异,最终影响其土壤细菌群落分类结构。土壤TN[38-39]、TP[40]和C/N[41]是调节森林土壤细菌群落分类结构的重要因素。本研究的RDA分析结果较好的反映了理化因子与土壤细菌群落分类结构的关系表层土壤SWC增加、TN增加和TP减少是驱动马尾松林分别与3个阔叶林土壤细菌群落分类结构具有显著差异的重要因素;而中层土壤C/N增加是导致马尾松林与红锥林土壤细菌群落分类结构差异显著的主要因子;但在底层马尾松林与3个阔叶林土壤细菌群落分类结构都没有显著差异(图3图4)。可见,马尾松林与3个乡土阔叶林土壤细菌群落分类结构的差异因土层而异,这是因为人工林凋落物累积在土壤表层,且针叶林与阔叶林的凋落物分解率不同[42],表层土壤理化性质差异较大,但随着土层加深,针叶林与阔叶林的理化性质差异缩小,使得细菌群落分类结构逐渐趋同。

      微生物群落构建过程一直是群落生态学关注的热点[43],然而由于多种生态过程的作用使因果关系的确定复杂化。βRC可以作为定量估计随机与确定性过程在微生物群落构建中贡献的指数[44],系统发育结构的变化也已被证明可以用于评估微生物群落构建过程中环境过滤、竞争排斥和随机过程的重要性[45]。本研究的βRC、NRI和NTI指数表明,马尾松林与3个阔叶林不同土层的土壤细菌群落构建均受环境过滤主导,这表明针叶与阔叶树种的更替不会造成土壤细菌群落构建机制的改变。这与华北亚高山林线区域土壤[11]、不同林龄的杉木人工林土壤(0~10 cm)[13]及不同时间历史的阔叶糖枫(Acer saccharum Marshall)天然林土壤有机质层[46]细菌的研究结果一致,认为是环境过滤调控细菌群落构建。此外,在土壤表层和中层,马尾松林转换为红锥林的物种组成和系统发育结构转换率高于转换为米老排林和火力楠林(图6),本文推测未来将马尾松林改造成红锥林后的土壤细菌种类更替比转换成米老排林和火力楠林更频繁,红锥林的土壤细菌群落稳定性较差,细菌间的相互作用更强烈[33]

    4.   结论
    • 本文推测南亚热带地区的马尾松林改建成阔叶林后,米老排林和火力楠林土壤表层细菌群落的分类与系统发育多样性显著提高了20.5%~23.8%,土壤SWC是影响的主导因子;3个阔叶林土壤细菌群落分类结构都在表层产生了显著的变化,而在中层只有红锥林有明显改变,主要受土壤SWC、TP、TN和C/N影响;不同土层的细菌群落构建主导因素没有发生改变,均是环境过滤;在土壤表层和中层,马尾松林转变为米老排林及火力楠林之间的分类和系统发育转换率都低于转变为红锥林,米老排林和火力楠林的土壤细菌群落比红锥林更稳定。基于土壤细菌群落分类与系统发育的多样性及转换率角度,该地区将马尾松林改建成米老排林或火力楠林比红锥林更能提高土壤细菌群落的稳定性。未来可开展针叶林转换乡土阔叶林后土壤细菌群落功能变化的研究,有助于深入理解林分转换介导土壤生态功能改变的调控机制。

Reference (46)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return