• 中国中文核心期刊
  • 中国科学引文数据库(CSCD)核心库来源期刊
  • 中国科技论文统计源期刊(CJCR)
  • 第二届国家期刊奖提名奖
Volume 30 Issue 4
Aug.  2017
Article Contents
Turn off MathJax

Citation:

Genetic Variation and Selection of Casuarina junghuhniana Provenances at Lingao, Hainan

  • Corresponding author: ZHONG Chong-lu, zcl@ritf.ac.cn
  • Received Date: 2016-11-18
  • Objective In order to screen out superior provenances and individual trees for further cross-breeding, the inter-provenance genetic variations in terms of wind-resistance, growth and morphological traits were discussed in this context due to a trial of Casuarina junghuhniana including 27 provenances at Lingao, Hainan, China. Method The height, DBH, volume and survival were measured at the 2nd, 5th and 7th years after planting, and the qualitative traits including AP, SFS, DPB, TPB, LDB, APB, LPB and RES were investigated at the 7th year after planting. The genetic variations of these traits were studied by variance analysis, genotypic and phenotypic correlations, and genetic parameters. The provenances of C. junghuhniana were also assessed by comprehensive coordinate method. Result Significant differences (P < 0.05) were detected among 27 provenances in survival and RES at the 2nd, 5th and 7th years after planting. For a further analysis, the top 18 provenances in higher survivals at age of 7 indicated signi? cant differences (P < 0.01) in tree height, DBH, volumes among provenances at the 2nd, 5th and 7th years after planting. It was also found that there were significant differences in TPB, APB, LDB, SFS (P < 0.01) and AP (P < 0.05) among provenances 7 years after planting. The heritability was moderate for growth traits and low for qualitative traits, suggesting the genetic controls were moderate on growth and weak on qualitative traits. Trends of coefficient of genetic variation for height were nearly stable, while the coefficients of genetic variations in DBH and volume tended to decreasing at initial and then increasing with age. The coefficients of genetic variation of height, DBH and volume were 11.89%-12.30%, 11.67%-13.67% and 30.20%-38.11%, respectively, and those for qualitative traits 7 years after planting ranged from 3.84×10-5% to 5.56%. The high age-age and trait-trait phenotypic and genetic correlations for height and DBH indicated that early selection and multiple traits selection were feasible. Height was superior to other traits in the early selection for C. junghuhniana due to its genetic stability. Conclusion By analyzing nine traits at the 7th year after planting by comprehensive coordinate method, three optimal provenances were selected, which are worthy to be developed for producing and cross-breeding.
  • 加载中
  • [1]

    Midgley S J, Turnbul L, Johnston R D. Casuarina Ecology[M]. Canberra: CSIRO, Management and Utilization, 1983.
    [2]

    Sougoufara B, Diem H G, Dommergues Y R. Response of field-grown Casuarina equisetifolia to inoculation with Frankia strain ORS 021001 entrapped in alginate beads[J]. Plant and Soil, 1989, 118(1): 133-137.
    [3] 杨政川, 张添荣, 陈财辉, 等. 木贼木麻黄在台湾之种源试验Ⅰ. 种子重与苗木生长[J]. 林业试验研究报告, 1995, 10(2): 2-7.

    [4] 仲崇禄, 白嘉雨, 张勇. 我国木麻黄种质资源引种与保存[J]. 林业科学研究, 2005, 18(3): 345-350. doi: 10.3321/j.issn:1001-1498.2005.03.023

    [5] 张勇. 三种木麻黄的遗传改良研究[D]. 北京: 中国林业科学研究院, 2013.

    [6]

    Mwihomeke S T, Mugasha A G, Chamshama S A O, et al. Early performance of provenances/land races at Lushoto, Tanzania[J]. Southern African Forestry Journal, 2002, 194(1): 7-14. doi: 10.1080/20702620.2002.10434587
    [7]

    Luechanimitchit P. Early results of a progeny trial of Casuarina junghuhniana in Thailand [J]. NFT News, 2006, 9(1): 1-2.
    [8]

    Nicodemus A, Varghese M, Nagarajan B. Selection of Casuarina junghuhniana Miq. provenances for multiple end uses in India[C]//Tewari V P, Srivastava R L. ' Multipurpose trees in the tropics: management and improvement strategies '. Proceedings of the IUFRO international conference, 22-25 November 2004, Jodhpur, India, 2005: 650-657.
    [9]

    Varghese M, Nicodemus A, Ravi N. Genetics and ecological variation in wood properties of Casuarina species[C]//Gurumurthi K, Nicodemus A, Siddappa. Casuarina Improvement and Utilization. IFGTB, Institute of Forest Genetics and Tree Breeding, Coimbatore, India, 2001: 29-38.
    [10] 仲崇禄, 施纯淦, 王维辉, 等. 华南地区山地木麻黄种源试验与筛选[J]. 林业科学, 2002, 38(6): 58-65. doi: 10.3321/j.issn:1001-7488.2002.06.011

    [11] 林什全, 仲崇禄, 白嘉雨. 广东省电白县5年生山地木麻黄种源试验及评选[J]. 林业科学研究, 2003, 16(4): 506-510. doi: 10.3321/j.issn:1001-1498.2003.04.022

    [12] 谭芳林. 福建滨海沙地山地木麻黄种源试验与选择研究[J]. 防护林科技, 2009(2): 1-2. doi: 10.3969/j.issn.1005-5215.2009.02.001

    [13] 施成坤. 山地木麻黄种源选择研究[J] 安徽农学通报, 2009, 15(3): 141-142. doi: 10.3969/j.issn.1007-7731.2009.03.066

    [14]

    Pinyopusarerk K, Kalinganire A, Williams E R, et al. Evaluation of international provenance trials of Casuarina equisetifolia. [M]. Canberra: CSIRO, Technical Reports, 2004.
    [15] 仲崇禄, 白嘉雨. 山地木麻黄家系遗传参数估算与家系选择[J]. 林业科学研究, 1998, 11(4): 361-369. doi: 10.3321/j.issn:1001-1498.1998.04.004

    [16] 许秀玉, 王明怀, 仲崇禄, 等. 不同树种木材性质及其抗台风性能[J]. 浙江农林大学学报, 2014, 31(5): 751-757.

    [17] 仲崇禄. 木麻黄遗传变异规律的研究[D]. 北京: 中国林业科学研究院, 2000.

    [18] 林元震. R与ASReml-R统计分析教程[M]. 北京: 中国林业出版社, 2014.

    [19]

    Gapare W J, Musokonyi C, Musokonyi C. Provenance performance and genetic parameter estimates for Pinus caribaea var. hondurensis planted at three sites in Zimbabwe[J]. Forest Genetics, 2002, 9(1): 183-189.
    [20]

    Xi yang Zhao, Cheng Wang, Shuchun Li, et al. Genetic variation and selection of introduced provenances of Siberian Pine (Pinus sibirica) in frigid regions of the Greater Xing'an Range, Northeast China[J]. Journal of Forestry Research, 2014, 25(3): 549-556. doi: 10.1007/s11676-014-0494-6
    [21] 刘宇, 郭建斌, 邓秀秀, 等. 秦岭火地塘林区3种土地利用类型的土壤潜在水源涵养功能评价[J]. 北京林业大学学报, 2016, 38(3): 73-80.

    [22]

    Jayaraj R S C. Casuarina junghuhniana (Casuarinaceae) in India[J]. Australian Journal of Botany, 2010, 58(2): 149-156. doi: 10.1071/BT09210
    [23] White T L, Adams W T, Neale D B. 森林遗传学[M]. 崔建国, 李火根, 译. 北京: 科学出版社, 2013: 101-130.

    [24]

    Robinson H F, Comstock R E, Harvey P H. Estimates of Heritability and the Degree of Dominance in Corn[J]. Agronomy Journal, 1949, 41(8): 353-359. doi: 10.2134/agronj1949.00021962004100080005x
    [25] 徐燕千, 劳家骐. 木麻黄栽培[M]. 北京: 中国林业出版社, 1984.

    [26]

    Orwa C, A Mutua, Kindt R, et al. 2009 Agroforestree Database: a tree reference and selection guide version 4.0 (http://www.worldagroforestry.org/sites/treedbs/treedatabases.asp)
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(7)

Article views(4723) PDF downloads(513) Cited by()

Proportional views

Genetic Variation and Selection of Casuarina junghuhniana Provenances at Lingao, Hainan

    Corresponding author: ZHONG Chong-lu, zcl@ritf.ac.cn
  • 1. Research Institute of Tropical Forestry, Chinese Academy of Forestry. Guangzhou 510520, Guangdong, China
  • 2. CSIRO Australian Tree Seed Centre, GPO Box 1600, ATC 2601, Canberra, Australia

Abstract:  Objective In order to screen out superior provenances and individual trees for further cross-breeding, the inter-provenance genetic variations in terms of wind-resistance, growth and morphological traits were discussed in this context due to a trial of Casuarina junghuhniana including 27 provenances at Lingao, Hainan, China. Method The height, DBH, volume and survival were measured at the 2nd, 5th and 7th years after planting, and the qualitative traits including AP, SFS, DPB, TPB, LDB, APB, LPB and RES were investigated at the 7th year after planting. The genetic variations of these traits were studied by variance analysis, genotypic and phenotypic correlations, and genetic parameters. The provenances of C. junghuhniana were also assessed by comprehensive coordinate method. Result Significant differences (P < 0.05) were detected among 27 provenances in survival and RES at the 2nd, 5th and 7th years after planting. For a further analysis, the top 18 provenances in higher survivals at age of 7 indicated signi? cant differences (P < 0.01) in tree height, DBH, volumes among provenances at the 2nd, 5th and 7th years after planting. It was also found that there were significant differences in TPB, APB, LDB, SFS (P < 0.01) and AP (P < 0.05) among provenances 7 years after planting. The heritability was moderate for growth traits and low for qualitative traits, suggesting the genetic controls were moderate on growth and weak on qualitative traits. Trends of coefficient of genetic variation for height were nearly stable, while the coefficients of genetic variations in DBH and volume tended to decreasing at initial and then increasing with age. The coefficients of genetic variation of height, DBH and volume were 11.89%-12.30%, 11.67%-13.67% and 30.20%-38.11%, respectively, and those for qualitative traits 7 years after planting ranged from 3.84×10-5% to 5.56%. The high age-age and trait-trait phenotypic and genetic correlations for height and DBH indicated that early selection and multiple traits selection were feasible. Height was superior to other traits in the early selection for C. junghuhniana due to its genetic stability. Conclusion By analyzing nine traits at the 7th year after planting by comprehensive coordinate method, three optimal provenances were selected, which are worthy to be developed for producing and cross-breeding.

  • 木麻黄(Casuarina spp.)具有速生、防风、固沙、抗逆及耐瘠薄等优良特性,是重要的防护林、用材林和多用途林树种[1-2]。我国引种木麻黄有110多年历史,最早于1897年引入台湾[3],20世纪80年代中期,借助国际合作项目,我国开始系统研究木麻黄种质资源的引种和选育[4]。目前,我国引进的木麻黄有20多种,人工种植面积达30多万公顷,但主要为短枝木麻黄(C. equisetifolia L.)、细枝木麻黄(C. cunninghamiana Miq.)和粗枝木麻黄(C. glauca Sieber. ex Spr.)。由于造林树种单一,种质资源匮乏,且长期受自然灾害及病虫害的影响,严重制约了木麻黄人工林的可持续经营[5]。开展山地木麻黄(C. junghuhniana Miq.)种质资源引种与测试,可丰富木麻黄种质资源,为木麻黄新品种创制和选育等提供基础材料,从而有利于提高沿海防护林的稳定性。

    山地木麻黄原产印度尼西亚,具有固氮、速生、抗旱及耐水湿等特性,天然分布于山地及沿海地区,已被广泛引种到世界热带及亚热带地区。国外对山地木麻黄的研究主要集中在种源间生长表现和适应性比较以及优良种源选择[6-8],对其种源遗传变异规律及遗传参数估算研究较少[9]。我国引种山地木麻黄始于20世纪80年代,相继在沿海各地开展小规模引种试验。1996年以来,中国林科院热带林业研究所在广东湛江和福建漳州开展了国际山地木麻黄种源试验,对其遗传参数进行估算,并筛选出适合华南地区生长的优良种源[10-11];福建省林科院在福建漳州开展了滨海沙地山地木麻黄种源试验[12-13];但海南省尚无系统的山地木麻黄种源试验报道,特别是针对大量原产地种质材料的测试。本文以从澳大利亚引进的27个山地木麻黄种源为材料开展种源试验,分析其生长、形质等性状方面的变异状况,揭示种源间性状的遗传变异规律,同时应用坐标综合评定法对各种源间生长和形质性状进行综合评价,以期为山地木麻黄的良种选育和种质资源的合理利用提供参考。

1.   试验地概况
  • 试验地位于海南省西北部临高县临城镇林木良种场(19°91′N,109°69′E),平均海拔5 m,属热带季风气候,高温多雨,光照充足。年均气温23.5℃,1月份平均气温为16.9℃,7月份平均气温为28.3℃。年平均雨日为139.5 d,年均降水量1 417.8 mm。土壤为砖红壤。试验地前茬为桉树。

2.   材料与方法
  • 试验所用山地木麻黄27个种源种子均由澳大利亚林木种子中心提供(表 1)。2008年3月开始育苗,9月造林,采用机耕全垦方式整地,株行距2 m×2 m,造林时每株施150 g复合肥作为基肥。

    编号
    No.
    种源号
    Provenance code
    采种地点
    Locality /Country
    纬度(S)
    Latitude
    经度(E)
    longitude
    海拔
    Altitude/m
    J1 18952 Mt Willis, East Java, Ind. 7°50’ 111°47’ 1 500
    J2 18948 Mt Kawi, East Java, Ind. 7°55’ 112°25’ 2 000
    J3 18951 Mt Arjuno, East Java, Ind. 7°45’ 112°35’ 1 350
    J4 18950 Mt Bromo, East Java, Ind. 7°55’ 112°55’ 1 600
    J5 18954 Mt Bromo, East Java, Ind. 7°55’ 112°55’ 2 500
    J6 18949 Mt Agropuro, East Java, Ind 8°00’ 113°35’ 1 500
    J7 18847 East Batu Kawu, Bali, Ind. 8°40’ 115°05’ 1 500
    J8 18845 Mt Pohen, Bali, Ind. 8°40’ 115°05’ 2 000
    J9 18844 Mt Tapak, Bali, Ind. 8°45’ 115°15’ 1 500
    J10 18846 Mt Pengalongan, Bali, Ind. 8°50’ 115°15’ 1 500
    J11 18849 Kintamani, Bali, Ind 8°13’ 115°20’ 1 500
    J12 18848 Mt abang, Bali, Ind 8°55’ 115°25’ 1 500
    J13 18850 Mt Santong, lombok, Ind. 8°25’ 116°28’ 1 500
    J14 18851 Mt lamore, Lombok, Ind 8°25’ 116°45’ 1 500
    J15 18852 Mt Tambora, Sumbawa, Ind 8°20’ 117°55’ 1 500
    J16 19489 Kapan, Kupang, Timor, Ind. 10°13’ 123°38’ 600
    J17 19490 Camplong, Timor, Ind 10°05’ 123°57’ 600
    J18 17878 Noelmina river, Timor, Ind. 9°59’ 124°06’ 170
    J19 17877 25 km SW Soe, Timor, Ind. 9°54’ 124°14’ 550
    J20 19491 Buat, Soe, Timor, Ind. 9°51’ 126°16’ 800
    J22 19239 Kari-Muguga, Ken. 1°16’ 36o36’ 2 060
    J23 18953 Mt. Arjuno, East Java, Ind. 7°42’ 112o33’ 1 350
    J24 19238 KEFRI Headquarters, Ken. 1°13’ 36°39’ 2 080
    J25 19242 Kabiruini, Ken. 0°23’ 36°56’ 1 800
    J26 19241 Thika, Ken. 1°02’ 37°12’ 1 440
    J27 19237 Meru, Ken. 0°07’ 37°37’ 1 750
    J28 18853 kwai Mission, Tanga, Tanz. 4°19’ 38°14’ 1 600
    注:Ind.是印度尼西亚,Ken.是肯尼亚,Tanz.坦桑尼亚。
    Note: Ind. is Indonesia, Ken. Is Kenyan. Tanz. is Tanzania.

    Table 1.  Details of seed origin of 27 Casuarina junghuhniana provenances

    试验采用随机区组设计,以种源为处理,8次重复,每个种源采用单行6株小区。试验地四周用3行木麻黄无性系A8作为保护行。至2013年调查时,试验林未受任何人为和自然灾害的破坏,总体保存率达80%以上。由于2014年经历2次台风袭击(即威尔逊台风,14级,2014年7月18号登陆;海鸥台风,13级,2014年9月16号登陆),部分种源保存率较低。

  • 造林后2、5、7 a时,对所有种源进行每木调查,包括树高(H, m)、胸径(DBH, cm)和保存率(SUR, %)。抗风性观测在台风危害后进行。造林7 a时,对主干通直度(SFS)、主干分叉习性(AP)、侧枝直径(TPB)、侧枝密度(DPB)、侧枝长度(LPB)、侧枝分枝角(APB)、绿色小枝长度(LDB)、抗风性(RES)进行观测分级[14-16]

  • 山地木麻黄各性状以单株测定数据进行统计分析,单株材积(V, m3·株)计算公式为[17]

    V=3.141 592 6×DBH2×H/120 000

    在方差分析前,对保存率进行反正弦转换,形质性状数据进行平方根转换。利用R语言结合软件ASReml 3.0和SPSS 22.0进行方差分析与多重比较、相关分析及遗传参数估算[18]

    观测值线性模型为:

    式中:yijk为观测值;μ为总体平均值;Ri为第i个区组的固定效应;Pj为第j个种源的随机效应;RPij为第i个区组与第j个种源互作的随机效应;ηijk为个体机误。

    种源遗传力(Hp2)[19-20]:$H_p^2 = \frac{{\sigma _p^2}}{{\sigma _p^2 + \sigma _{pR}^2 + \sigma _p^2}}$

    式中: σp2为种源方差分量,σpR2为种源与区组互作方差分量,σe2为误差方差分量。

    表型方差分量(σph2)为:

    遗传变异系数(GCVA, %)为:

    式中:X是性状的平均值,σp是性状种源方差分量的平方根。

    性状间的遗传相关系数(rG)和表型相关系数(rP)为:

    式中:CovG(x, y)为性状x与性状y间的遗传协方差,σGx2为性状x的遗传方差分量,σGy2为性状y的遗传方差分量;Covp(x, y)为性状x与性状y间的表型协方差,σpx2为性状x的表型方差分量,σpy2为性状y的表型方差分量。

    种源选择遗传增益估算:

    式中:ΔG为种源性状遗传增益;Hp2为种源性状遗传力;S为入选种源性状均值与种源性状总均值的离差;X-1为种源性状总均值。

    基于各性状的观测值,采用坐标综合评定法[21]对各种源进行综合评价,筛选优良种源。

    式中:Pi为综合值, Xij为第i个种源第j个性状的平均观测值, Xjmax为第j个性状的最大平均观测值,n为性状个数。

3.   结果与分析
  • 表 2表明:在测定的3个年份,山地木麻黄各种源间保存率均差异显著(P < 0.05);造林后2、5、7 a,其保存率分别为19.67%~99.41%、0.59%~93.93%、0.28%~76.67%,其中,造林后2、5 a时,山地木麻黄的整体平均保存率在74%以上,7 a时因遭受超强台风袭击,整体保存率降至40%。造林后2、5 a时,种源18948、19489和17878保存率最高,均达90%以上;造林后7 a时,种源18844、18846、18849和19489保存率最高,均在70%以上。

    种源
    Provenance
    保存率Survival /% 抗风性
    Wind-resistance
    2 a 5 a 7 a
    18952 88.89±0.61ab 65.25±0.39ab 9.22±1.00efg 1.31±0.15e
    18948 96.72±0.83a 93.44±1.02a 38.85±2.63abcdef 2.07±0.21cd
    18951 98.33±0.75a 89.56±1.58a 13.65±1.46defg 1.55±0.19de
    18950 95.80±1.06ab 85.87±0.92a 37.19±2.70abcdef 3.13±0.17a
    18954 94.59±0.84ab 80.11±0.66ab 61.83±1.52ab 3.40±0.17a
    18949 97.53±0.59a 58.76±4.56ab 13.65±1.93defg 1.83±0.23de
    18847 19.67±5.29c 0.59±0.59c 0.28±0.28g 2.50±1.50bc
    18845 93.44±1.02ab 73.26±3.86ab 52.44±3.03abcd 3.46±0.15a
    18844 98.90±0.47a 86.35±3.62a 73.26±3.86a 3.24±0.17a
    18846 99.41±0.59a 88.89±0.61a 76.67±1.27a 3.40±0.12a
    18849 96.72±0.83a 89.33±1.14a 72.64±1.12a 3.60±0.17a
    18848 94.59±0.84ab 68.49±3.33ab 24.88±5.79bcdef 2.10±0.21cd
    18850 87.78±1.26ab 65.25±2.47ab 51.43±1.72abcd 3.13±0.16a
    18851 93.25±0.59ab 37.19±4.39b 6.07±1.62fg 1.67±0.27de
    18852 88.89±0.61ab 70.10±0.73ab 59.07±0.46abc 3.31±0.18a
    19489 97.53±0.59a 91.98±0.76a 74.79±1.24a 3.27±0.19a
    19490 98.33±0.75a 74.52±3.10ab 56.66±2.88abc 3.25±0.17a
    17878 98.33±0.75a 93.93±1.73a 69.52±0.40a 3.00±0.19ab
    17877 91.98±0.76ab 89.33±1.14a 63.51±2.73ab 3.28±0.20a
    19491 72.64±5.33b 62.84±4.19ab 21.05±1.83bcdefg 1.56±0.18de
    19239 85.87±0.92ab 70.45±3.16ab 56.66±2.98abc 3.30±0.12a
    18953 94.91±1.35ab 84.86±1.75a 16.93±1.82cdefg 1.77±0.20de
    19238 83.62±0.45ab 83.62±0.45a 46.56±1.70abcde 3.28±0.18a
    19242 93.25±0.59ab 67.55±2.54ab 35.52±1.47abcdef 3.14±0.17a
    19241 85.65±0.82ab 61.83±1.15ab 41.54±0.21abcdef 3.00±0.11a
    19237 97.53±0.59a 80.66±1.22ab 38.17±1.05abcdef 2.81±0.18ab
    18853 82.02±0.62ab 60.85±0.22ab 41.24±0.44abcdef 3.40±0.23a
    平均Means 92.07±0.05 74.09±0.09 40.90±0.09 2.74±0.04
    F test ** ** ** **
    注:* P<0.05的显著水平,** P<0.01的极显著水平,ns为不显著,小写字母表示在0.05水平上显著,下同。
    Note: * P<0.05 level of significance, ** P<0.01 level of significance, ns-no significant, lowercase letter indicate significant at 0.05 level, The same below.

    Table 2.  Average surivival values and wind-resistance score with standard error of 27 Casuarina junghuhniana provenances

    表 2还表明:造林后7 a时,山地木麻黄种源抗风性差异显著,种源18952的抗风性最差,种源18849、18845、18954、18846、18852、19239和18853的抗风性相对较好。

    由于超强台风的影响,部分种源保存率较低,树干倒伏、折断较严重,小区数据缺失,为保证分析结果的可靠性,基于上述保存率及抗风性分析,剔除7 a时缺失5个小区以上的9个种源(18952、18948、18951、18949、18847、18848、18851、19491和18953),仅对保存有5个小区以上的18个种源的生长和形质性状进行统计分析。

  • 表 3可看出:造林后2、5、7 a时,18个种源的树高、胸径、单株材积均存在极显著差异(P < 0.01),说明生长性状在种源水平上具有很大的遗传改良潜力;各种源的树高均值分别为3.48~6.12、4.98~8.26、7.50~11.67 m,胸径均值分别为2.66~4.75、4.84~7.73、5.96~9.55 cm,单株材积均值分别为1.02×10-3~4.46×10-3、4.43×10-3~16.14×10-3、10.20×10-3~34.88×10-3 m3,其中,种源19490和17877表现最好,种源18846和18845表现最差。

    种源
    Provenance
    树高Height /m 胸径DBH/cm 单株材积Volume/×10-3m3
    2 a 5 a 7 a 2 a 5 a 7 a 2 a 5 a 7 a
    18950 4.54±0.21cdef 6.38±0.29cd 9.25±0.64cdef 3.17±0.21g 5.39±0.36cde 6.89±0.58efg 1.51±0.34def 6.14±1.29def 14.35±3.9def
    18954 4.45±0.21def 6.55±0.30cd 9.95±0.54bcde 3.32±0.21defg 5.41±0.36cde 7.37±0.50efg 1.66±0.34cdef 6.51±1.33def 17.38±3.30def
    18845 4.90±0.22bcde 5.94±0.32def 8.34±0.57efg 3.76±0.21cdef 5.17±0.39de 6.36±0.53fg 2.59±0.34b 4.96±1.42f 10.44±3.49f
    18844 5.05±0.21bc 6.64±0.30cd 8.51±0.51defg 4.09±0.20bc 6.00±0.36bcd 6.59±0.47efg 2.95±0.33b 7.63±1.33cdef 11.14±3.08ef
    18846 4.58±0.21cde 6.18±0.29de 8.15±0.49fg 3.34±0.20defg 4.84±0.35e 5.96±0.45g 1.75±0.33cdef 4.98±1.26f 10.20±2.99f
    18849 5.03±0.21bcd 7.68±0.30ab 10.82±0.50abc 3.22±0.21g 6.35±0.36bc 7.84±0.46def 1.65±0.33cdef 9.45±1.33cde 19.01±3.04cdef
    18850 5.32±0.22b 7.21±0.35bc 10.06±0.57bcd 3.84±0.22cd 6.73±0.42ab 8.14±0.52abcde 2.70±0.35b 9.75±1.52cde 18.47±3.49def
    18852 4.64±0.22cde 6.35±0.32cd 8.81±0.55defg 3.27±0.22efg 5.45±0.39cde 6.96±0.50efg 1.73±0.35cdef 5.99±1.42ef 13.64±3.36def
    19489 5.45±0.21b 7.92±0.28ab 11.46±0.49ab 4.20±0.21bc 7.59±0.34a 9.18±0.45abcd 2.91±0.33b 14.26±1.25ab 28.33±2.99abc
    19490 6.12±0.21a 7.91±0.32ab 11.67±0.55a 4.75±0.20a 7.66±0.38a 9.55±0.51a 4.46±0.33a 15.86±1.38a 34.00±3.36a
    17878 4.36±0.21ef 6.61±0.29cd 9.66±0.51cdef 3.36±0.20defg 6.42±0.35bc 8.01±0.46bcde 1.77±0.33cdef 10.03±1.26cde 22.97±3.13bcd
    17877 5.96±0.22a 8.26±0.29a 11.45±0.53ab 4.44±0.21ab 7.73±0.36a 9.40±0.48abc 3.87±0.34a 16.14±1.29a 34.88±3.24a
    19239 4.46±0.23def 6.58±0.34cd 9.00±0.55defg 3.79±0.23cde 6.46±0.41bc 7.65±0.51ef 2.42±0.36bc 10.10±1.49cd 20.87±3.36cde
    19238 4.50±0.23cdef 6.74±0.29cd 10.17±0.58abcd 3.24±0.22fg 6.40±0.36bc 8.96±0.54abcd 1.85±0.36cde 11.43±1.29bc 31.45±3.56ab
    19242 4.36±0.21ef 4.98±0.33g 7.61±0.66g 3.40±0.21defg 4.89±0.40de 6.72±0.61efg 2.30±0.34bcd 4.43±1.44f 12.67±4.00def
    19241 3.48±0.23g 5.16±0.35fg 8.13±0.64fg 2.66±0.22h 5.13±0.42de 7.18±0.59efg 1.02±0.36f 5.94±1.54ef 19.35±3.90cdef
    19237 3.95±0.21fg 5.47±0.31efg 7.50±0.66g 2.96±0.21gh 5.16±0.37de 7.25±0.59efg 1.23±0.33ef 4.87±1.36f 13.51±4.00def
    18853 4.40±0.23ef 6.50±0.35cd 9.38±0.64cdef 3.19±0.23g 5.64±0.42bcde 7.36±0.59efg 1.85±0.36cde 7.71±1.52cdef 18.12±3.90def
    均值Means 4.77±0.06 6.66±0.08 9.55±0.14 3.57±1.46 6.06±0.09 7.67±0.13 2.25±0.09 8.82±0.35 19.76±0.87
    F test ** ** ** ** ** ** ** ** **

    Table 3.  Average values on height, DBH and individual volume with standard error and Duncan Multiple Range Test of 18 C. junghuhniana provenances at 2, 5 and 7 years after planting

    表 4表明:造林后7 a时,山地木麻黄侧枝直径(TPB)、侧枝分枝角(APB)、绿色小枝长度(LDB)及主干通直度(SFS)在种源间差异极显著;主干分叉习性(AP)在种源间差异显著;而抗风性(RES)、侧枝密度(DPB)及侧枝长度(LPB)在种源间差异不显著。

    种源
    Provenance
    RES DPB TPB APB LPB LDB AP SFS
    18950 3.13±0.06abc 3.33±0.05abc 3.25±0.08a 1.42±0.06bcd 1.92±0.03a 1.33±0.06bcd 4.79±0.08abcd 2.82±0.03efg
    18954 3.40±0.05abc 3.06±0.05bc 3.00±0.07abcd 1.38±0.05bcd 1.94±0.03a 1.56±0.05abc 4.61±0.08abcd 3.29±0.03ab
    18845 3.46±0.06ab 3.22±0.06bc 3.11±0.09ab 1.22±0.07d 2.00±0.04a 1.67±0.07ab 4.00±0.09cd 2.84±0.04efg
    18844 3.24±0.05abc 3.45±0.04ab 3.05±0.06abcd 1.32±0.04cd 1.95±0.03a 1.64±0.04ab 4.58±0.08abcd 2.89±0.04def
    18846 3.40±0.05ab 3.44±0.05ab 3.06±0.07abc 1.19±0.05d 2.00±0.03a 1.50±0.05abc 4.16±0.08bcd 3.20±0.03bcd
    18849 3.60±0.05a 3.20±0.04bc 2.70±0.06abcde 1.30±0.05cd 2.00±0.03a 1.35±0.05bcd 4.21±0.08bcd 3.56±0.03a
    18850 3.13±0.05abc 3.06±0.05bc 2.44±0.07bcde 1.44±0.05abcd 1.94±0.03a 1.44±0.05abc 3.85±0.09d 3.09±0.04bcde
    18852 3.31±0.05abc 3.26±0.04bc 2.95±0.06abcd 1.47±0.05abcd 1.89±0.03a 1.32±0.05bcd 4.39±0.08abcd 3.08±0.04bcde
    19489 3.27±0.05abc 3.43±0.04ab 2.62±0.06abcde 1.71±0.05ab 1.95±0.03a 1.67±0.04ab 4.91±0.08abc 3.20±0.03bcd
    19490 3.25±0.05abc 3.31±0.05abc 2.38±0.07de 1.50±0.05abcd 2.00±0.03a 1.69±0.05ab 4.49±0.08abcd 3.03±0.04bcde
    17878 3.00±0.05bc 3.29±0.04abc 2.43±0.06cde 1.81±0.05a 1.86±0.03a 1.00±0.04d 4.23±0.08abcd 2.63±0.03fg
    17877 3.28±0.05abc 3.50±0.04ab 2.70±0.06abcde 1.75±0.05ab 1.95±0.03a 1.80±0.05a 4.95±0.08ab 3.15±0.03bcde
    19239 3.30±0.06abc 3.26±0.04bc 2.87±0.06abcde 1.30±0.04cd 2.00±0.03a 1.61±0.04ab 4.75±0.08abcd 3.06±0.04bcde
    19238 3.28±0.06abc 3.16±0.04bc 2.32±0.06e 1.47±0.05abcd 1.95±0.03a 1.37±0.05bcd 4.97±0.08ab 3.05±0.03bcde
    19242 3.14±0.06abc 3.33±0.05abc 2.67±0.08abcde 1.67±0.06abc 2.00±0.03a 1.00±0.06d 4.34±0.08abcd 2.51±0.04g
    19241 3.00±0.06abc 3.44±0.05ab 2.94±0.07abcde 1.38±0.05bcd 2.00±0.03a 1.31±0.05bcd 4.35±0.08abcd 2.89±0.04cdef
    19237 2.81±0.06c 3.79±0.05a 3.14±0.07ab 1.14±0.06d 1.86±0.03a 1.43±0.05abc 5.11±0.08a 2.86±0.04def
    18853 3.40±0.06abc 3.31±0.05c 2.69±0.08bcde 1.46±0.06d 1.92±0.03a 1.38±0.06cd 5.00±0.09ab 3.26±0.04abc
    均值Means 3.25±0.01 3.32±0.01 2.77±0.02 1.45±0.01 1.95±0.01 1.46±0.01 4.54±0.02 3.03±0.01
    F test ns ns ** ** ns ** * **

    Table 4.  The mean score of qualitative traits with standard error and Duncan Multiple Range Test of 18 C. junghuhniana provenances at 7years after planting

  • 表 5可知:树高、胸径、单株材积等生长性状的种源遗传力随着林龄的增长,呈先增长后降低的趋势,其种源遗传力分别为13.80%~16.00%、8.64%~11.90%、8.42%~14.30%。造林后7 a时,各形质性状间种源遗传力差异较大,TPBAPBLDBSFS的种源遗传力均>5%,RESDPBLPBAP的种源遗传力均<1%。树高的遗传变异系数随着林龄的增加变化不大,其遗传变异系数为12%左右;胸径和单株材积的遗传变异系数随林龄的增加呈先增加后降低的趋势,其遗传变异系数分别为11.67%~13.67%、30.20%~38.11%。造林后7 a时,除DPB的遗传变异系数接近于0,其他形质性状的遗传变异系数为0.34%~5.56%。采用20%的入选率,造林后2、5、7 a时,树高、胸径、单株材积的遗传增益分别为2.59%~3.08%、1.95%~2.69%、4.86%~9.08%。造林后7 a时,形质性状的遗传增益为3.29×10-8%~2.45%,明显低于生长性状,选择生长性状进行遗传改良效果较好。

    性状Trait σp2 σp2R σph2 σp2e Hp2/% GCVA/% ΔG/%
    H2 0.344 0.581 2.339 1.414 14.70** 12.30 2.92
    DBH2 0.182 0.767 2.104 1.155 8.64* 11.96 1.95
    V2 0.461a 2.590a 5.481a 2.430a 8.42* 30.20 4.86
    H5 0.666 0.648 4.164 2.850 16.00** 12.25 3.08
    DBH5 0.685 0.846 5.778 4.247 11.90** 13.67 2.69
    V5 0.011b 0.012b 0.079b 0.055b 14.30** 38.11 9.08
    H7 1.290 1.550 9.370 6.530 13.80** 11.89 2.59
    DBH7 0.802 1.199 7.734 5.733 10.40* 11.67 2.17
    V7 0.047b 0.061b 0.355b 0.247b 13.40** 34.85 8.41
    RES 0.439b 0.002 0.080 0.077 0.50ns 0.64 0.03
    DPB 0.016a 0.003 0.033 0.030 0.05a** 3.84a 3.29b
    TPB 0.005 0.003 0.077 0.069 6.88* 2.62 0.91
    APB 0.004 0.003 0.047 0.040 8.75* 4.41 1.70
    LPB 0.043b 0.002 0.014 0.012 0.30 ns 0.34 0.01
    LDB 0.007 0.001 0.046 0.039 14.30** 5.56 2.45
    AP 0.002 0.019 0.248 0.227 0.72 ns 0.93 0.07
    SFS 0.003 0.009 0.051 0.038 6.54* 1.91 0.65
    注:表中a表示方差分量×10-3, b表示方差分量×10-6H2、DBH2、V2、H5、DBH5、V5、H7、DBH7、V7分别表示造林后2、5、7 a时的树高、胸径和单株材积;RESDPBTPBAPBLPBLDBAPSFS为造林后7 a时测定;下同
    Note: a represents variances×10-3, b represents variances×10-6. H2, DBH2, V2, H5, DBH5, V5, H7, DBH7, V7 represents the height, diameter at breast height and volume at 2, 5 and 7 years after planting, respectively. RES, DPB, TPB, APB, LPB, LDB, AP, SFS is measured at 7 years after planting. The same below.

    Table 5.  Estimates of variances (σp2, σp2R, σph2, σe2) for additive, interaction, phenotypic and error, respectively, and Provenance heritability (HP2), genetic coefficient of variation (GCVA) and genetic gains (ΔG) for various traits

    表 6可看出:树高、胸径、单株材积3个生长性状间的表型和遗传均呈极显著相关,相关系数均>0.68。TPB与3个生长性状间的遗传和表型均呈显著或极显著负相关,而APB与3个生长性状间的遗传和表型均呈显著或极显著正相关;APB除与TPB间的表型和遗传呈极显著负相关外,与其他形质性状均相关不显著;树高与SFS间的表型和遗传呈极显著正相关,这对选择生长快和干形好的种源极为有利。不同林龄间,树高和胸径的遗传相关系数均在0.78以上,达极显著相关,说明对生长性状进行早期选择是可行的。

    H2 H5 H7 DBH2 DBH5 DBH7 V2 V5 V7 TPB APB LDB AP SFS
    H2 0.97** 0.94** 0.94** 0.87** 0.82** 0.92** 0.86** 0.75** -0.52* 0.45* 0.77** -0.17ns 0.38*
    H5 0.83** 0.99** 0.84** 0.91** 0.85** 0.84** 0.89** 0.78** -0.63** 0.51* 0.69** 0.10ns 0.66**
    H7 0.77** 0.87** 0.82** 0.78** 0.89** 0.81** 0.74** 0.94** -0.76** 0.67** 0.50* 0.26ns 0.60**
    DBH2 0.88** 0.74** 0.68** 0.88** 0.84** 0.87** 0.93** 0.80** -0.52* 0.53* 0.86** -0.02ns 0.11ns
    DBH5 0.77** 0.86** 0.94** 0.81** 0.93** 0.90** 0.94** 0.85** -0.90** 0.76** 0.62** 0.37ns 0.35ns
    DBH7 0.75** 0.83** 0.82** 0.77** 0.99** 0.85** 0.89** 0.98** -0.92** 0.81** 0.42* 0.75* 0.28ns
    V2 0.86** 0.76** 0.68** 0.99** 0.82** 0.77** 0.91** 0.84** -0.54* 0.51* 0.80** 0.01ns 0.06ns
    V5 0.72** 0.85** 0.74** 0.74** 0.99** 0.99** 0.82** 0.89** -0.84** 0.69** 0.61** 0.47ns 0.36ns
    V7 0.70** 0.79** 0.72** 0.72** 0.96** 0.94** 0.77** 0.99** -0.88** 0.75** 0.40ns 0.75* 0.25ns
    TPB -0.43** -0.50** -0.55** -0.52* -0.56** -0.60** -0.47** -0.48** -0.55** -0.82** 0.15ns -0.06ns -0.07ns
    APB 0.23** 0.28** 0.30** 0.23** 0.30** 0.29** 0.20** 0.24** 0.25** -0.15* -0.25ns 0.11ns -0.42ns
    LDB 0.15* 0.11* 0.09ns 0.16* 0.03ns -0.02ns 0.15* 0.07ns 0.04ns 0.27** - 0.35ns 0.55*
    AP 0.04ns 0.04ns 0.05ns 0.06* -0.04ns -0.03ns 0.06ns - 0.03ns -0.07ns 0.01ns 0.07ns -0.16ns
    SFS 0.15** 0.20** 0.17** 0.05ns 0.07* 0.05ns 0.07ns 0.11* 0.10* -0.10* -0.09ns 0.07ns 0.25**

    Table 6.  Genotypic (upper triangle), phenotypic correlations (lower triangle) for various traits

  • 选择种源间差异显著的生长及形质性状,应用坐标综合评定法对18个种源进行综合评定(表 7)发现,最好的3个种源为17877、19489和19490,其评估得分分别为0.074 5,0.095 4和0.212 2;种源19242最差,其评估得分值为1.277 0。

    种源
    Provenance
    H7 D7 V7 SUR TPB APB LDB AP SFS 综合评价
    Overview
    排名
    Rank
    18950 0.042 9 0.077 9 0.346 5 0.265 2 0.000 0 0.047 1 0.067 2 0.000 0 0.043 5 0.890 3 14
    18954 0.021 7 0.052 1 0.251 7 0.025 3 0.005 9 0.057 7 0.017 4 0.001 5 0.005 8 0.439 1 5
    18845 0.081 3 0.111 9 0.491 1 0.039 4 0.001 8 0.105 3 0.005 5 0.027 5 0.040 8 0.904 7 15
    18844 0.073 2 0.095 9 0.463 2 0.002 0 0.004 0 0.073 7 0.008 3 0.011 0 0.035 3 0.766 5 13
    18846 0.091 0 0.141 7 0.500 5 0.000 0 0.003 3 0.118 2 0.027 8 0.034 9 0.010 2 0.927 5 16
    18849 0.005 3 0.032 1 0.207 1 0.002 8 0.028 6 0.079 3 0.062 5 0.031 6 0.000 0 0.449 3 6
    18850 0.019 0 0.021 9 0.221 4 0.108 4 0.062 5 0.042 3 0.040 6 0.061 3 0.017 6 0.594 8 9
    18852 0.059 8 0.073 4 0.370 9 0.052 7 0.008 7 0.034 4 0.072 4 0.020 1 0.018 2 0.710 6 10
    19489 0.000 3 0.001 5 0.035 2 0.000 6 0.037 7 0.002 8 0.005 5 0.001 6 0.010 2 0.095 4 2
    19490 0.000 0 0.000 0 0.000 6 0.068 1 0.072 5 0.029 3 0.003 9 0.015 1 0.022 7 0.212 2 3
    17878 0.029 5 0.026 2 0.116 5 0.008 7 0.063 9 0.000 0 0.197 5 0.030 2 0.069 4 0.542 0 8
    17877 0.000 4 0.000 2 0.000 0 0.029 5 0.028 6 0.001 1 0.000 0 0.001 0 0.013 7 0.074 5 1
    19239 0.052 2 0.039 7 0.161 3 0.085 6 0.013 7 0.077 9 0.011 3 0.005 1 0.020 4 0.467 3 7
    19238 0.016 5 0.003 9 0.009 7 0.154 2 0.082 6 0.034 4 0.057 5 0.000 8 0.020 9 0.380 5 4
    19242 0.121 2 0.087 8 0.405 4 0.317 0 0.032 2 0.006 2 0.197 5 0.022 8 0.086 8 1.277 0 18
    19241 0.092 2 0.061 7 0.198 1 0.209 9 0.009 2 0.057 7 0.073 4 0.022 3 0.035 6 0.760 0 11
    19237 0.127 6 0.058 1 0.375 3 0.252 2 0.001 1 0.135 7 0.042 6 0.000 0 0.039 3 1.031 8 17
    18853 0.038 6 0.052 7 0.230 8 0.312 6 0.029 4 0.037 0 0.053 3 0.000 5 0.007 4 0.762 3 12

    Table 7.  Ordinal ranking of 18 C. junghuhniana provenances

4.   讨论
  • 目前,在山地木麻黄的遗传改良过程中,种源选择是遗传改良的常规方法,探究种源的遗传变异规律,可为杂交育种亲本选配提供依据。泰国和印度的山地木麻黄种源试验结果表明,不同种源在生长表现、木材密度和含水量、树皮厚度、干形以及分枝特性等方面存在显著差异[7-8, 22]。我国相继开展了多地种源试验,仲崇禄等[10]在福建漳州和广东电白的研究表明,4年生时, 树高、胸径和单株材积在种源间存在显著或极显著差异。本研究结果显示,造林后7 a时,山地木麻黄的生长性状(树高、胸径、单株材积)和部分形质性状(侧枝直径、侧枝分枝角、绿色小枝长度、主干通直度及主干分叉习性)在种源水平上亦存在显著或极显著差异,与上述结论相似,说明开展山地木麻黄种源选择具有较大潜力。

    山地木麻黄生长性状的各遗传参数在生长过程中呈现出较强的规律性。树高、胸径和单株材积的种源遗传力随林龄的增长均呈先增加后降低的趋势,造林后7 a时种源遗传力下降,很可能是由于2014年超强台风的袭击导致环境方差分量增大造成的。仲崇禄等[10]开展山地木麻黄多地点种源试验,其4年生时生长性状的种源遗传力比本研究造林后2、5、7 a时都低,可能是由于本研究基于单一地点试验的缘故[23];就单一地点而言,本研究显示海南临高山地木麻黄生长性状的种源遗传力比广东电白的低[11],说明地点对山地木麻黄种源试验的影响较大,因此,开展多地点种源试验,有利于提高遗传参数估算的可靠性。Robinson[24]对遗传力的程度进行了分类,受高度、中度和低度遗传控制时,其遗传力分别为30%~ 60%、10 %~30%、5%~10%。山地木麻黄生长性状种源遗传力随林龄的波动不大,其变化范围为8.42 %~16.00%,说明其受中度或中度偏下的遗传控制。造林后7 a时,在观测的多个性状中,生长性状的遗传变异系数明显大于形质性状,而生长性状中树高的遗传变异系数高于胸径,说明树高在种源间变异更显著,而且其与大部分形质性状显著相关,因此,树高是山地木麻黄种源选择最有效的性状。

    林木生长周期较长,良种选育难度较大,为缩短育种周期,早期选择作为筛选优良种源的有效途径颇受重视。国内研究认为,木麻黄速生用材林的轮伐期为7~15 a[25];泰国研究认为,用于速生用材林和薪炭林的山地木麻黄轮伐期为5 a[26]。本文选用造林后2、5、7a 3个林龄的生长性状进行早晚相关分析发现,山地木麻黄的树高和胸径早-晚相关十分紧密,且主要受遗传因素控制。比较树高和胸径的种源遗传力及早-晚相关系数,发现树高的种源遗传力和早-晚相关系数比胸径相对应的值大,因此,用树高作为山地木麻黄早期选择性状比较适宜。

    基于山地木麻黄的生长及形质性状进行遗传参数估算,本研究初步筛选出一批优良种源,为山地木麻黄优良单株的选择奠定了基础。此外,还应对山地木麻黄的木材材性进行研究,开展生长和材性性状的遗传相关分析,将有助于速生优质山地木麻黄新品种选育,亦为将来木麻黄种内和种间杂交育种提供亲本材料。

5.   结论
  • (1) 造林后2、5、7 a时,参试的27个山地木麻黄种源间保存率和抗风性均差异显著(P < 0.05);而造林后7 a时保存率较高的18个种源间树高、胸径和单株材积等生长性状均存在极显著差异(P < 0.01);7 a时,TPBAPBLDBAPSFS等形质性状在种源间亦存在显著或极显著差异。

    (2) 山地木麻黄的树高、胸径及单株材积等生长性状受中等或中等偏下的遗传控制,而其形质性状受低程度遗传控制。

    (3) 各性状的遗传变异系数及性状间相关性分析表明,树高适宜作为山地木麻黄早期选择性状。

    (4) 通过各性状综合评定,筛选出17877、19489和19490等3个优良种源。

Reference (26)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return