• 中国中文核心期刊
  • 中国科学引文数据库(CSCD)核心库来源期刊
  • 中国科技论文统计源期刊(CJCR)
  • 第二届国家期刊奖提名奖
Volume 32 Issue 5
Oct.  2019
Article Contents
Turn off MathJax

Citation:

Correlation Analysis of Phenolic Compound Content and Hydroxyl Radical Scavenging Capacity in Seabuckthorn Berry

  • Corresponding author: HE Cai-yun, hecy@caf.ac.cn
  • Received Date: 2018-09-27
    Accepted Date: 2019-06-06
  • Objective The relationship between hydroxyl radical scavenging capacity and seven phenolic substances in Seabuckthorn fruits was analyzed to provide reference for exploring the hydroxyl radical scavenging capacity of phenolic substances. Method The sea buckthorn fruits of Fengning cultivar and Xiangyang cultivar in three development stages (green fruit stage, discoloration stage and mature stage) were used as experimental materials. The contents of seven phenolic substances such as rutin, quercetin, isorhamnetin, kaempferol, myricetin, naringenin and vitamin E were determined by gas chromatography-mass spectrometry (GC-MS) technique. The hydroxyl radical scavenging ability of sea buckthorn fruit was determined by spectrophotometry. Then the correlation between the seven phenolic substances and hydroxyl radical scavenging capacity was analyzed. Result The results showed that the hydroxyl radical scavenging ability of Fengning cultivar was significantly higher than that of Xiangyang cultivar, the hydroxyl radical scavenging ability of Fengning cultivar decreased successively in the three development stages, while that of Fengning cultivar was the strongest in green fruit stage and the weakest in discoloration stage. The contents of rutin, quercetin, isorhamnetin, kaempferol, myricetin and naringenin in the sarcocarp of Fengning cultivar were higher than those in Xiangyang cultivar. The contents of rutin and myricetin in the sarcocarp of Fengning cultivar were significantly higher than those in Xiangyang cultivar during the three stages ( P < 0.05). In addition, the contents of quercetin, isorhamnetin, naringenin and myricetin increased at first and then decreased in the three developmental stages, while the changes of rutin, vitamin E and kaempferol were different between the two cultivars. The correlation analysis showed that the correlation coefficients between rutin, quercetin, isorhamnetin, kaempferol, myricetin and naringenin and hydroxyl radical scavenging ability were all greater than 0.6, while the correlation coefficients between vitamin E and hydroxyl radical scavenging ability were only 0.17. Conclusion The hydroxyl radical scavenging ability are strongly correlated with the contents of rutin, quercetin, isorhamnetin, kaempferol, myricetin and naringenin, which were helpful to promote the scavenging of hydroxyl radicals in seabuckthorn fruit.
  • 加载中
  • [1]

    Halliwell B. Free radicals, antioxidants, and human disease:curiosity, cause, or consequence?[J]. Lancet, 1994, 344(8924):721-724. doi: 10.1016/S0140-6736(94)92211-X
    [2]

    Lucia R, Marek O, Daniela K, et al . Free radical scavenging activity and lipoxygenase inhibition of Mahonia aquifoliumextract and isoquinoline alkaloids[J]. Journal of Inflammation, 2007, 4(1):15.
    [3]

    GórnasP, Miš ina I, Krasnova I, et al . Tocopherol and tocotrienol contents in the sea buckthorn berry beverages in Baltic countries:Impact of the cultivar[J]. Fruits, 2016, 71(6):399-405. doi: 10.1051/fruits/2016030
    [4]

    Olas B, Żuchowski J, Lis B, et al . Comparative chemical composition, antioxidant and anticoagulant properties of phenolic fraction (a rich in non-acylated and acylated flavonoids and non-polar compounds) and non-polar fraction from Elaeagnus rhamnoides (L.) A. Nelson fruits[J]. Food Chemistry, 2018, 247:39-45.
    [5]

    Pernin A, Dubois-Brissonnet F, Roux s, et al . Phenolic compounds can delay the oxidation of polyunsaturated fatty acids and the growth of Listeria monocytogenes:structure-activity relationships[J]. Journal of the Science of Food and Agriculture, 2018, 98(14):5401-5408. doi: 10.1002/jsfa.9082
    [6] 曾少敏, 杨健, 王龙, 等.梨果实酚类物质含量及抗氧化能力[J].果树学报, 2014, 31(1):39-44.

    [7] 仇占南, 张茹阳, 彭明朗, 等.北京野生软枣猕猴桃果实品质综合评价体系[J].中国农业大学学报, 2017, 22(2):45-53.

    [8] 冯立娟, 尹燕雷, 焦其庆, 等.不同石榴品种果实酚类物质及抗氧化活性研究[J].核农学报, 2016, 30(4):710-718.

    [9] 周丹蓉, 方智振, 叶新福, 等.李果实中多酚含量及其抗氧化能力研究[J].园艺学报, 2017, 44(3):422-430.

    [10] 王华磊, 冯建荣, 樊新民, 等.新疆17个杏品种的抗氧化指标与总酚含量的测定[J].果树学报, 2008, 25(6):828-831.

    [11] 李晓博, 胡文忠, 姜爱丽, 等.芒果果肉抗氧化成分测定及其对自由基清除能力的研究[J].食品工业科技, 2016, 37(10):161-164.

    [12] 张华, 周志钦, 席万鹏.15种柑橘果实主要酚类物质的体外抗氧化活性比较[J].食品科学, 2015, 36(11):64-70. doi: 10.7506/spkx1002-6630-201511013

    [13] 王传宏, 刘超, 刘静, 等.新疆药用植物黑桑的抗氧化性(英文)[J].林业科学, 2014, 50(8):53-59.

    [14] 蒋雯雯, 马淼, 郭艳, 等.刺山柑多酚类物质含量及其抗氧化活性研究[J].西北植物学报, 2012, 32(3):555-558. doi: 10.3969/j.issn.1000-4025.2012.03.018

    [15] 范惠玲, 白生文, 张芬琴, 等.河西走廊5种沙棘果主要活性成分及对ROS清除作用比较分析[J].天然产物研究与开发, 2016(1):107-111.

    [16]

    Cheng J, Kondo K, Suzuki Y, et al . Inhibitory effects of total flavones of Hippophae rhamnoides L.on thrombosis in mouse femoral artery and in vitro platelet aggregation.[J]. Life Sciences, 2003, 72(20):2263-2271. doi: 10.1016/S0024-3205(03)00114-0
    [17]

    Lavola A, Karjalainen R, Julkunentiitto R. Bioactive polyphenols in leaves, stems, and berries of Saskatoon ( Amelanchier alnifolia Nutt.) cultivars.[J]. Journal of Agricultural & Food Chemistry, 2012, 60(4):1020-1027.
    [18]

    Shahidi F, Ambigaipalan P. Phenolics and polyphenolics in foods, beverages and spices:Antioxidant activity and health effects-A review[J]. Journal of Functional Foods, 2015, 18:820-897. doi: 10.1016/j.jff.2015.06.018
    [19]

    Arimboor R, Kumar K S, Arumughan C. Simultaneous estimation of phenolic acids in sea buckthorn ( Hippophaё rhamnoides ) using RP-HPLC with DAD[J]. Journal of Pharmaceutical & Biomedical Analysis, 2008, 47(1):31-38.
    [20]

    Tian Y, Liimatainen J, Alanne A L, et al . Phenolic compounds extracted by acidic aqueous ethanol from berries and leaves of different berry plants[J]. Food Chemistry, 2017, 220:266-281. doi: 10.1016/j.foodchem.2016.09.145
    [21] 张元元, 吕珊, 陈梦杰, 等.沙棘酚类特征成分含量测定及其特征图谱质量表征关联分析研究[J].北京中医药大学学报.2018, 41(5):383-394. doi: 10.3969/j.issn.1006-2157.2018.05.006

    [22]

    Różalska B, Sadowska B, Żuchowski J, et al . Phenolic and Nonpolar Fractions of Elaeagnus rhamnoides (L.) A. Nelson Extracts as Virulence Modulators-In Vitro Study on Bacteria, Fungi, and Epithelial Cells[J]. Molecules, 2018, 23(7):1498-1517. doi: 10.3390/molecules23071498
    [23] 何志勇, 夏文水.壳聚糖澄清对沙棘果汁酚类成分的影响[J].食品科学, 2005, 26(5):108-111. doi: 10.3321/j.issn:1002-6630.2005.05.020

    [24]

    Puganen A, Kallio H, Schaich K M, et al . Red/green currant and sea buckthorn berry press residues as potential sources of antioxidants for food use[J]. Journal of Agricultural and Food Chemistry, 2018;66(13):3426-3434. doi: 10.1021/acs.jafc.8b00177
    [25]

    Nowak D, Gośliński M, Wojtowicz E, Przygoński K. Antioxidant Properties and Phenolic Compounds of Vitamin C-Rich Juices[J]. J Food Sci, 2018;83(8):2237-2246. doi: 10.1111/1750-3841.14284
    [26] 段礼新, 漆小泉.基于GC-MS的植物代谢组学研究[J].生命科学, 2015, 27(8):971-977.

    [27]

    Caceres L A. A study of volatile organic compounds from transgenic Arabidopsis thaliana and Solanum lycopersicum plants and analytical characterization of pyrolysis bio-oil[D]. London, Ontario: School of Graduate and Postdoctoral Studies, University of Western Ontario, 2015: 1-207.
    [28] 崔美玉.碳纤维微富集/顶空原位衍生化方法同时GC/MS检测多种植物激素[R].中国化学会第28届学术年会, 2012.

    [29] 赵金梅, 高贵田, 薛敏, 等.不同品种猕猴桃果实的品质及抗氧化活性[J].食品科学, 2014, 35(9):118-122.

    [30] 夏乐晗, 陈玉玲, 冯义彬, 等.不同品种杏果实发育过程中类黄酮、总酚和三萜酸含量及抗氧化性研究[J].果树学报, 2016, 33(4):425-435.

    [31] 王友升, 谷祖臣, 张帆.不同品种和成熟度树莓和黑莓果实的氧化和抗氧化活性比较[J].食品科学, 2012, 33(9):81-86.

    [32] 徐洪宇, 王军辉, 黄晓华, 等. 12个楸树无性系叶片多酚含量与抗氧化活性[J].林业科学研究, 2015, 28(2):297-301.

    [33]

    He C, Zhang G, Zhang J, et al . Integrated analysis of multiomic data reveals the role of the antioxidant network in the quality of sea buckthorn berry[J]. Faseb Journal, 2017, 31(5):1929-1938. doi: 10.1096/fj.201600974R
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2) / Tables(5)

Article views(4074) PDF downloads(57) Cited by()

Proportional views

Correlation Analysis of Phenolic Compound Content and Hydroxyl Radical Scavenging Capacity in Seabuckthorn Berry

    Corresponding author: HE Cai-yun, hecy@caf.ac.cn
  • 1. Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
  • 2. Collaborative-Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu, China

Abstract:  Objective The relationship between hydroxyl radical scavenging capacity and seven phenolic substances in Seabuckthorn fruits was analyzed to provide reference for exploring the hydroxyl radical scavenging capacity of phenolic substances. Method The sea buckthorn fruits of Fengning cultivar and Xiangyang cultivar in three development stages (green fruit stage, discoloration stage and mature stage) were used as experimental materials. The contents of seven phenolic substances such as rutin, quercetin, isorhamnetin, kaempferol, myricetin, naringenin and vitamin E were determined by gas chromatography-mass spectrometry (GC-MS) technique. The hydroxyl radical scavenging ability of sea buckthorn fruit was determined by spectrophotometry. Then the correlation between the seven phenolic substances and hydroxyl radical scavenging capacity was analyzed. Result The results showed that the hydroxyl radical scavenging ability of Fengning cultivar was significantly higher than that of Xiangyang cultivar, the hydroxyl radical scavenging ability of Fengning cultivar decreased successively in the three development stages, while that of Fengning cultivar was the strongest in green fruit stage and the weakest in discoloration stage. The contents of rutin, quercetin, isorhamnetin, kaempferol, myricetin and naringenin in the sarcocarp of Fengning cultivar were higher than those in Xiangyang cultivar. The contents of rutin and myricetin in the sarcocarp of Fengning cultivar were significantly higher than those in Xiangyang cultivar during the three stages ( P < 0.05). In addition, the contents of quercetin, isorhamnetin, naringenin and myricetin increased at first and then decreased in the three developmental stages, while the changes of rutin, vitamin E and kaempferol were different between the two cultivars. The correlation analysis showed that the correlation coefficients between rutin, quercetin, isorhamnetin, kaempferol, myricetin and naringenin and hydroxyl radical scavenging ability were all greater than 0.6, while the correlation coefficients between vitamin E and hydroxyl radical scavenging ability were only 0.17. Conclusion The hydroxyl radical scavenging ability are strongly correlated with the contents of rutin, quercetin, isorhamnetin, kaempferol, myricetin and naringenin, which were helpful to promote the scavenging of hydroxyl radicals in seabuckthorn fruit.

  • 羟自由基作用于体内蛋白质、核酸、脂类等生物分子,造成细胞结构和功能受损,进而导致代谢紊乱引起疾病[1-2]。羟自由基清除能力是评价抗氧化能力的重要指标之一,在抗氧化类保健品和药品研究中得到广泛应用[3-5]。研究人员在梨( Pyrus L.)、软枣猕猴桃( Actinidia arguta Planch. ex Miq.)、石榴( Punica granatum Linn.)、李( Prunus saliceina Linn.)、杏( Armeniaca vulgaris Lam.)、芒果( Mangifera indica Linn.)、柑橘( Citrus reticulate Blanco.)、黑桑( Morus nigra Linn.)、刺山柑( Capparis spinosa L.)等多种植物研究中发现其果实的羟自由基清除能力与酚类物质含量具有显著相关性[6-14]。沙棘( Hippophae rhamnoides L.)属于胡颓子科沙棘属植物,是一种药食同源植物,含有丰富的生物活性物质,其中酚类物质含量尤其丰富[15-18]。目前,对沙棘果实酚类物质的研究主要集中在酚类物质的提取,酚类物质的测定,酚类提取物的作用以及沙棘产品的加工[4, 19-25];而关于不同酚类物质含量与羟自由基清除能力相关性的研究在沙棘果实中研究较少,主要集中在梨、猕猴桃、柑橘等树种[6-7, 12]。因此,本研究以沙棘品种丰宁和向阳不同发育时期果实为研究材料,对沙棘果实提取物的羟自由基清除能力与酚类物质含量间的相关性进行探索,将为评估沙棘果实质量提供参考,同时对于沙棘产品生产加工及沙棘栽培育种过程中的品种选择具有重要意义。

1.   材料与方法
  • 研究材料采自内蒙古磴口县(107°05′ E,40°13′N)的中国沙棘( H.rhamnoides subsp. sinensis )品种丰宁和蒙古沙棘( H.rhamnoides subsp. mongolia )品种向阳的果实。沙棘栽植于沙壤土,处于自然条件下,树龄为12 a。每个品种3个生物学重复,从每棵树的不同部位,东西南北4个方向随机分别摘取3个不同发育时期(分别为绿果期、变色期和成熟期)的果实。所用的标准品维生素E(10191-41-0)、芦丁(153-18-4)、槲皮素(117-39-5)、柚皮素(480-41-1)、杨梅素(529-44-2)、山奈酚(520-18-3)、异鼠李素(480-19-3)购买于百灵威公司。

  • 混标工作液配制:量取0.5 mL芦丁(1 mg·mL-1)和0.5 mL异鼠李素(50 μg·mL-1)溶于1.0 mL甲醇配制2.0 mL混标溶液A;量取0.2 mL山萘酚(10 μg·mL-1)、0.2 mL杨梅素(50 μg·mL-1)、0.2 mL柚皮素(50 μg·mL-1)、0.2 mL槲皮素(100 μg·mL-1)和0.2 mL维生素E(500 μg·mL-1)溶于1.0 mL甲醇配制2.0 mL混标溶液B。

    衍生化处理:将混标溶液装入衍生化小瓶中,2个平行,放入快速离心干燥仪中挥干。挥干后的标品中加入80.0 μL的甲氧胺盐酸吡啶溶液(15 mg·mL-1),涡旋震荡2 min后,于震荡培养箱中37℃肟化反应90 min,取出后再加入80.0 μL的BSTFA(含1%TMCS)衍生试剂,涡旋震荡2 min后,于70℃反应60 min。取出样本,室温放置30 min[26-28]

    气相质谱-色谱(GC-MS)分析:本实验的分析仪器为Agilent公司的7890A-5975C气相色谱飞行时间质谱联用仪(Agilent,USA),1.0 μL衍生化后的提取物用无分流模式注入GC-MS系统进行分析,样品经非极性的DB-5MS毛细管柱(30 m × 250 μm I.D., J&W Scientific, Folsom, CA)分离后进入质谱检测。载气为高纯氦气,载气流速1.0 mL·min-1。程序升温:15℃·min-1,60~170℃;5℃·min-1,170305℃;305℃维持6~7 min。进样口的温度为260℃,EI源温度为230℃,电压为70 V。质量扫描范围:m/z 55~800,延迟12 min开始采集,采集速度为20谱·s-1[26-28]

    标准方程建立:分别吸取不同体积的混标A、B、内标溶液(表 1),装入衍生化小瓶中,3个平行,放入快速离心干燥仪中挥干。挥干后的标品用两步法进行衍生化,进行GC-MS分析。标准工作液中色素的质谱响应强度=色素特征碎片质谱响应强度/内标特征碎片质谱响应强度;以加入色素量作为自变量 x ,质谱响应强度作为因变量 y ,求取 xy 的函数关系。

    μL
    系列浓度混标 Serial number A混标溶液
    Mixed standard solution of A
    B混标溶液
    Mixed standard solution of B
    内标 Internal Standard (L-2-cl-phe, 0.03 mg·L-1)
    1 200 200 40
    2 100 100 40
    3 50 50 40
    4 20 20 40
    5 10 10 40
    6 5 5 40
    7 2 2 40

    Table 1.  Different concentrations of standard-mix solution

  • 60.0 mg沙棘浆果加入960.0 μL的冷甲醇-水(3:1,v/v)和40 μL的内标(L-2-氯-苯丙氨酸,0.03 mg·mL-1,甲醇配置),匀浆(Tissuelyser-192,上海净信科技公司),超声提取30 min,低温离心10 min(14 000 rpm,4℃),取700.0 μL的上清液,装入玻璃衍生瓶中,用快速离心浓缩仪挥干后,向玻璃衍生小瓶中加入80.0 μL的甲氧胺盐酸吡啶溶液(15 mg·mL-1),涡旋震荡2 min后,于震荡培养箱中37℃肟化反应90 min,取出后再加入80.0 μL的BSTFA(含1%TMCS)衍生试剂,涡旋震荡2 min后,于70℃反应60 min。取出样本,室温放置30 min,进行GC-MS分析[26-28]

  • 取1.5 g沙棘果实,匀浆,分装于20个1.5 mL离心管中,每管60.0 mg,采用样品加标准品的方式进行方法学考察,加标是采用低(混标6)、中(混标4)、高(混标2)3种加标量(表 1),作为本底的样本不加标,每种样品5个平行。按照“1.2.2 ”中描述的前处理方法进行处理,并进行GC-MS分析。加标液的质谱响应强度=(加标样本的质谱响应强度-本底的质谱响应强度)/内标的质谱响应强度。将加标液的质谱响应强度代入标曲的方程中可以得到计算的标准品量;准确度=标准品计算值/实际加入量×100%[26-28]

  • H2O2/Fe2+通过Fenton反应产生羟自由基,将邻二氮菲-Fe2+水溶液中Fe2+氧化为Fe3+,导致536 nm吸光度下降, 样品对536 nm吸光度下降速率的抑制程度,反映了样品清除羟自由基的能力,采用羟自由基清除能力检测试剂盒(BC1325, 北京索莱宝科技公司)对羟自由基清除能力进行测定。

  • 运用Excel 2013整理数据及作图,采用SPASS 17.0软件分析得到酚类物质定量标准方程,利用单因素方差分析判断果实不同发育时期酚类物质含量和羟自由基清除能力的差异,用相关分析方法分析酚类物质含量与羟自由基清除能力之间的相关关系。

2.   结果与分析
  • 本实验利用芦丁、槲皮素、异鼠李素、山奈酚、杨梅素、柚皮素和维生素E 7种标准品,配制系列混标溶液(表 1),衍生化处理后,进行GC-MS分析。得到相应物质保留时间及特征碎片离子后,选出特异性好且丰度高的特征碎片离子作为此物质定量离子(表 2)。根据定量离子建立标准曲线用于样品中相应物质定量分析,其中,标准工作液中标定物的质谱响应强度=标定物特征碎片质谱响应强度/内标特征碎片质谱响应强度;以加入标定物量作为自变量 x ,质谱响应强度作为因变量 y ,绘制工作曲线并拟合得到标准方程(表 3)。

    名称
    Compound
    保留时间
    Retention time/min
    特征碎片离子
    Characteristic fragment ion
    定量离子
    Quant mass
    L-2-cl-苯丙氨酸 (2-cl-phe) 12.39 218, 147, 125, 100, 89 218
    芦丁 (Rutin) 22.00 217, 204, 175, 147, 129 217
    柚皮素 (Naringenin) 29.76 545, 532, 459, 219, 147 545
    山萘酚 (Kaempferol) 31.80 559, 487, 272, 193, 147 559
    槲皮素 (Quercetin) 32.68 647, 559, 487, 193, 147 647
    维生素E (Vitamin E) 32.60 502, 277, 237, 221, 208 237
    杨梅素 (Myricetin) 32.85 735, 647, 393, 207, 147 735
    异鼠李素 (Isorhamnetin) 33.80 589, 559, 515, 279, 207 589

    Table 2.  Quantitative information of standard substrates

    色素名称
    Compound
    保留时间
    Retention time/min
    定量碎片
    Quantmass
    线性范围
    Range/μg
    方程
    Equation
    相关性系数  R2 检测限
    LOD/μg
    芦丁 (Rutin) 22.00 332 1.250~50.000 y = 0.009 x + 0.006 8 0.997 2 0.250
    柚皮素 (Naringenin) 29.76 217 0.050~5.000 y = 0.005 7 x - 0.000 7 0.995 2 0.010
    山萘酚 (Kaempferol) 31.80 545 0.005~0.200 y = 0.140 7 x - 0.000 6 0.998 5 0.001
    槲皮素 (Quercetin) 32.68 559 0.250~10.000 y = 0.012 2 x - 0.004 0.996 6 0.050
    维生素E (Vitamin E) 32.60 647 0.500~50.000 y = 0.031 5 x - 0.034 0.991 4 0.100
    杨梅素 (Myricetin) 32.85 237 0.025~1.000 y = 0.036 6 x - 0.000 4 0.999 8 0.005
    异鼠李素 (Isorhamnetin) 33.80 735 0.063~2.500 y = 0.037 4 x - 0.002 0.999 0 0.012

    Table 3.  Establishiment of standard equation

  • 以低、中、高3个加标水平考察定量方法的准确度和精密度。3种不同添加浓度水平下考察的准确度为91.36%~109.13%;日内精密度和日间精密度的相对标准偏差(RSD)均小于10%(表 4)。结果显示:整个定量方法准确、稳定、可靠。

    物质名称
    Compound
    加标量
    Spiked/μg
    检测量
    Observed/μg
    准确度/%
    Accuracy ( n = 5)
    精密度 RSD/%
    日内 (Intra-day, n = 5) 日间 (Inter-day, n = 5)
    芦丁(Rutin) 25.000 23.307±1.209 93.23±3.67 5.44 5.45
    5.000 5.161±0.436 103.21±7.89 9.09 9.31
    1.250 1.240±0.967 99.21±6.32 3.37 4.91
    柚皮素(Naringenin) 2.500 2.357±0.023 94.30±8.98 2.91 5.40
    0.500 0.517±0.057 103.57±7.56 4.63 7.34
    0.125 0.115±0.008 92.38±7.35 3.46 3.40
    山萘酚(Kaempferol) 0.100 0.104±0.009 104.23±3.22 2.13 4.79
    0.020 0.020±0.008 101.29±3.56 1.34 2.02
    0.005 0.005±0.001 107.58±4.12 7.71 8.40
    槲皮素(Quercetin) 5.000 4.777±0.345 95.54±7.34 3.10 5.62
    1.000 1.037±0.124 103.79±4.67 4.67 5.84
    0.250 0.228±0.012 91.36±5.67 2.20 4.53
    维生素E(Vitamin E) 25.000 25.817±1.318 103.27±2.12 1.29 3.93
    5.000 5.033±0.476 100.67±7.67 3.29 5.93
    1.250 1.231±0.114 98.54±8.26 5.54 7.13
    杨梅素(Myricetin) 0.500 0.489±0.013 97.90±1.90 2.18 4.38
    0.100 0.106±0.012 106.58±7.34 5.03 6.94
    0.025 0.027±0.017 109.13±8.67 9.19 9.04
    异鼠李素(Isorhamnetin) 1.250 1.235±0.011 98.80±4.67 2.49 4.96
    0.250 0.261±0.012 104.54±3.89 2.24 3.94
    0.063 0.064±0.004 102.34±6.89 7.53 7.75

    Table 4.  Results of seven phenolic substrate with relative standard deviation and accuracy

  • 本研究中选择对丰宁和向阳2品种绿果期、变色期和成熟期3个时期沙棘果实的7种酚类物质含量进行测定。在沙棘2品种果实中,芦丁、杨梅素、槲皮素、异鼠李素、柚皮素、山奈酚这6种酚类物质含量在3个时期中丰宁均高于向阳,维生素E含量在变色期和成熟期丰宁高于向阳,其中,在绿果期,芦丁、杨梅素、柚皮素、山奈酚含量差异显著( P <0.05);在变色期,7种酚类物质含量均差异显著( P <0.05);在成熟期,芦丁、杨梅素、槲皮素含量差异显著( P <0.05)。在沙棘果实不同发育时期7种酚类物质含量变化明显,对丰宁7种酚类物质含量分析显示:从绿果期到变色期芦丁、槲皮素、异鼠李素、维生素E、山奈酚和杨梅素6种酚类物质含量显著升高( P <0.05),柚皮素含量显著降低( P <0.05);从变色期到成熟期7种酚类物质含量均显著降低( P <0.05)。对向阳7种酚类物质含量分析显示:从绿果期到变色期槲皮素、异鼠李素、杨梅素3种酚类物质含量升高但差异不显著,芦丁、柚皮素、维生素E、山奈酚4种酚类物质含量降低且柚皮素含量有显著变化( P <0.05);从变色期到成熟期芦丁含量显著升高( P <0.05),槲皮素、异鼠李素、柚皮素、维生素E、山奈酚、杨梅素6种物质含量降低,其中,芦丁、槲皮素、异鼠李素、维生素E、山奈酚含量具有显著变化( P <0.05)(图 1)。

    Figure 1.  Trendency of seven phenolic substrates between 2 Hippophae rhamnoides L. cultivars during fruit ripening

  • 2种沙棘品种间的羟自由基清除能力差异明显。在绿果期,沙棘品种丰宁的羟自由基清除能力是沙棘品种向阳的4倍;在变色期,沙棘品种丰宁的羟自由基清除能力为沙棘品种向阳的23倍;在成熟期沙棘品种丰宁的羟自由基清除能力是沙棘向阳的9倍。由图 2可知:在沙棘品种丰宁中,绿果期的羟自由基清除能力最强,其次为变色期,成熟期最弱;在沙棘品种向阳中,绿果期的羟自由基清除能力最强,其次为成熟期,变色期最弱。

    Figure 2.  Capacity of hydroxyl radical scavenging between 2 Hippophae rhamnoides L. cultivars during fruit ripening

  • 将羟自由基清除能力与芦丁、槲皮素、异鼠李素、山奈酚、杨梅素、柚皮素和维生素E这7种酚类物质含量进行相关性分析,结果(表 5)显示:除维生素E外,其它6种酚类物质(芦丁、槲皮素、异鼠李素、山奈酚、杨梅素、柚皮素)与羟自由基的清除能力具有极显著正相关关系( r >0.6, P <0.01)。

    羟自由基清除能力 SA/% 芦丁
    Rutin
    槲皮素
    Quercetin
    异鼠李素
    Isorhamnetin
    山奈酚
    Kaempferol
    杨梅素
    Myricetin
    柚皮素
    Naringenin
    维生素
    EVitamin E
    羟自由基清除能力 SA/% 1.000
    芦丁 (Rutin) 0.611** 1.000
    槲皮素 (Quercetin) 0.663** 0.905** 1.000
    异鼠李素 (Isorhamnetin) 0.628** 0.874** 0.990** 1.000
    山奈酚 (Kaempferol) 0.763** 0.686** 0.853** 0.851** 1.000
    杨梅素 (Myricetin) 0.663** 0.902** 0.965** 0.950** 0.875** 1.000
    柚皮素 (Naringenin) 0.768** 0.168 0.312 0.308 0.657** 0.377 1.000
    维生素E (Vitamin E) 0.170 0.516* 0.581* 0.538* 0.392 0.493* -0.152 1.000
    注:*在0.05水平(双侧)上显著相关,* *在0.01水平(双侧)上显著相关。
    Notes: *Indicates significant differences at 0.05 level, * * Indicates significant differences at 0.01 level.

    Table 5.  Correlations for seven phenolic compounds related to hydroxyl radical scavenging capacity in seabucthorn fruit

3.   讨论
  • 果实的羟自由基清除能力(抗氧化能力)是影响果实品质的一个重要因素。对石榴、李、猕猴桃( Actinidia Lindl.)、杏等植物果实的抗氧化能力研究结果显示:羟自由基清除能力与酚类物质的含量呈显著的正相关[8, 9, 30-31]。本研究表明:沙棘中芦丁、槲皮素、异鼠李素、山奈酚、杨梅素、柚皮素这6种酚类物质与羟自由基清除能力呈极显著正相关( r >0.6, P <0.01),与石榴、李、猕猴桃等植物的研究结果一致。因此,芦丁、槲皮素、异鼠李素、山奈酚、杨梅素和柚皮素这6种酚类物质的含量可以为沙棘果实的质量评价提供参考。

    选择对沙棘果实3个不同时期进行研究,比之柑橘、猕猴桃、杏、树莓( Rubus idaeus Linn.)中仅选择成熟期进行研究,更能反应在发育过程中酚类物质与羟自由基清除能力之间的关系;但在本研究中选择的沙棘品种数比之柑橘、猕猴桃、杏、树莓有所不足[12, 29-32]。因此,为了更好的对沙棘优良品种的选择提供参考,尚需选择更多沙棘品种做进一步的研究。

    尽管本研究中仅对沙棘果实羟自由基清除能力与部分酚类物质含量之间的相关性关系进行了分析,然而果实中除这些酚类物质外,提取物中的其他成分如类胡萝卜素类、维生素类、生物碱类以及原花青素、单宁等物质,也可能共同参与了羟自由基的清除,而这些物质与羟自由基清除能力之间的关系,尚需进一步的研究[30-33]。同时,本研究仅从生理角度探讨了沙棘果中酚类物质与羟自由基清除能力之间的关系,并未深入到其分子调控,因此,在接下来的工作中需要从沙棘转录水平、代谢水平等多个分子层面对沙棘的抗氧化能力进行研究。

4.   结论
  • 沙棘中芦丁、槲皮素、异鼠李素、山奈酚、杨梅素、柚皮素这6种酚类物质与抗氧化能力具有极显著正相关性( r >0.6, P <0.01),其含量可以为沙棘果实质量的评价提供参考。

Reference (33)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return