• 中国中文核心期刊
  • 中国科学引文数据库(CSCD)核心库来源期刊
  • 中国科技论文统计源期刊(CJCR)
  • 第二届国家期刊奖提名奖
Volume 34 Issue 1
Jan.  2021
Article Contents
Turn off MathJax

Citation:

Effects of Soil Physicochemical Properties on Growth and Heartwood Formation of Castanopsis hystrix Plantation

  • Corresponding author: JIA Hong-yan, rlzxjhy@163.com
  • Received Date: 2020-03-17
    Accepted Date: 2020-09-21
  • Objective To assess the relationships between the growth and heartwood formation of Castanopsis hystrix plantation and the physicochemical properties of soil so as to provide evidences for site selection and high-quality heartwood production of C. hystrix. Method Nine plots with size of 20 m × 30 m were set, and the growth of C. hystrix trees within each plot were investigated in middle-aged and near-matured pure C. hystrix plantations at the Experimental Centre of Tropical Forestry, Chinese Academy of Forestry in Pingxiang of Guangxi Zhuang Autonomous Region. The dominant trees were sampled, and the stem analysis were conducted to reveal their growth and heartwood properties. Meanwhile, soil samples were collected from 0-20 cm, 20-40 cm, 40-60 cm and 60-100 cm depths, respectively, to analyze the physical and chemical properties. Grey relationship analysis was applied to study the effects of soil physicochemical properties on the growth and heartwood properties of C. hystrix. Result The ratio of heartwood diameter, height and volume in the middle-aged and near-matured plantations were 24.27% and 49.33%, 44.99% and 45.99%, and 14.94% and 6.88%, respectively. It was indicated from Grey correlation analysis that the diameter at breast height, height and volume showed high coefficients with soil capillary porosity and total porosity in near-matured plantations, while with soil non-capillary porosity and total phosphorus content in middle-aged plantations. The heartwood properties showed high coefficients with the contents of total potassium as well as available potassium and phosphorus in both the middle-aged and near-matured plantations. Conclusion Soil capillary porosity, non-capillary porosity and total porosity are the main factors influencing the growth of C. hystrix plantations, and soil total potassium and available potassium contents are the main factors influencing the heartwood formation of C. hystrix.
  • 加载中
  • [1]

    Nohretedt H. Response of coniferous forest ecosystems on mineral soil to nutrient addition: A review of Swedish experiences[J]. Scandinavian Journal of Forest Research, 2001, 16(6): 555-573. doi: 10.1080/02827580152699385
    [2]

    Yu C B, Chen F, Luo Z J, et al. Evaluation of soil nutrient status in poplar forest soil by nutrient systematic approach[J]. Journal of Forestry Research, 2004, 15(2): 298-300.
    [3] 曹子林, 肖智勇, 高 辉, 等. 毛乌素沙地土壤理化性质对中国沙棘人工林生长的影响[J]. 西北林学院学报, 2015, 30(2):22-26. doi: 10.3969/j.issn.1001-7461.2015.02.04

    [4] 林文树, 穆 丹, 王丽平, 等. 针阔混交林不同演替阶段表层土壤理化性质与优势林木生长的相关性[J]. 林业科学, 2016, 52(5):17-25.

    [5] 杜 健, 梁坤南, 周树平, 等. 不同地区柚木人工林生长及土壤理化性质的研究[J]. 林业科学研究, 2016, 29(6):854-860.

    [6]

    Watanabe Y, Owusu-Sekyere E, Masunaga T, et al. Teak (Tectona grandis) growth as influenced by soil physicochemical properties and other site conditions in Ashanti region, Ghana[J]. Journal of Food, Agriculture and Environment, 2010, 18(2): 1040-1045.
    [7]

    Singh I S, Awasthi O P, Meena S R. Influence of tree plantation on soil physico-chemical properties in arid region[J]. Indian Journal of Agroforestry, 2010, 12(2): 42-47.
    [8]

    Watanabe Y, Masunaga T, Fashola O O, et al. Eucalyptus camaldulensis and Pinus caribaea growth in relation to soil physico-chemical properties in plantation forests in Northern Nigeria[J]. Soil Science and Plant Nutrition, 2009, 55: 132-141. doi: 10.1111/j.1747-0765.2008.00340.x
    [9] 崔之益, 徐大平, 杨曾奖, 等. 土壤含水量对旱季降香黄檀树干呼吸和非结构性碳水化合物的影响[J]. 生态学杂志, 2018, 37(5):374-382.

    [10]

    Kint V, Vansteenkise D, Aertsen W, et al. Forest structure and soil fertility determine internal stem morphology of Pedunculate oak: a modeling approach using boosted regression trees[J]. European Journal of Forest Research, 2012, 131: 609-622. doi: 10.1007/s10342-011-0535-z
    [11]

    Bektas I, Alma H M, Goker Y, et al. Influence of site on sapwood and heartwood ratios of Turkish calabrian pine[J]. Forest Products Journal, 2003, 53(4): 48-50.
    [12] 贾宏炎. 中国林业科学研究院热带林业实验中心树木园植物名录[M]. 南宁: 广西科学技术出版社, 2014: 96.

    [13] 蔡道雄, 贾宏炎, 卢立华, 等. 我国南亚热带珍贵乡土阔叶树种大径材人工林的培育[J]. 林业科学研究, 2007, 20(2):165-169. doi: 10.3321/j.issn:1001-1498.2007.02.003

    [14] 彭玉华, 谭长强, 郑 威, 等. 环境因子对广西红锥幼林生长的影响[J]. 生态科学, 2020, 39(2):90-94.

    [15] 唐继新, 白灵海, 郭文福, 等. 红锥人工林生长规律的初步研究[J]. 中南林业科技大学学报, 2012, 32(4):51-54. doi: 10.3969/j.issn.1673-923X.2012.04.011

    [16] 卢立华, 汪炳根, 何日明. 立地与栽培模式对轰锥生长的影响[J]. 林业科学研究, 1999, 12(5):519-523. doi: 10.3321/j.issn:1001-1498.1999.05.013

    [17] 蒋 燚, 王 勇, 刘晓蔚, 等. 红锥生长过程中心材变化特征研究[J]. 西南林业大学学报, 2015, 35(4):53-57.

    [18] 韩 畅, 宋 敏, 杜 虎, 等. 广西不同林龄杉木、马尾松人工林根系生物量及碳储量特征[J]. 生态学报, 2017, 37(7):2610-2617.

    [19]

    Zhou H, Feng Rand Huang H, et al. Method of tree-ring image analysis for dendrochronology[J]. Optical Engineering, 2012, 51(7): 077202-1. doi: 10.1117/1.OE.51.7.077202
    [20] 张志伟, 亢新刚, 杨 华, 等. 长白山3个主要针叶树种材积方程的研究[J]. 西北林学院学报, 2010, 25(4):144-150.

    [21] 国家林业局. 森林土壤分析方法[S]. 北京: 中国标准出版社, 2000.

    [22] 赖文胜. 长序榆苗木的高生长及与气象因子的关联分析[J]. 福建林学院学报, 2000, 21(2):157-160.

    [23] 杨保国, 贾宏炎, 郝 建, 等. 不同林龄柚木人工林心边材生长变异特征[J]. 林业科学, 2020, 56(1):65-73. doi: 10.11707/j.1001-7488.20200107

    [24] 张 蕊, 王秀花, 陈柳英, 等. 不同红豆树人工林生长和心材特性的差异[J]. 浙江农林大学学报, 2012, 29(1):412-419.

    [25]

    Seddighi A, Khoshkebijary F, Foumani BS. Effect of physicochemical characteristics of soil on growth and wood production in Cottonwood Plantation(Populusdeltoides (Stury area: Masal forests of Iran)[J]. Annals if Biological Research, 2012, 3(6): 3067-3072.
    [26] 唐 诚, 王春胜, 庞圣江, 等. 广西大青山人工林土壤养分特征及其与立地生产力的关系[J]. 林业科学研究, 2018, 31(2):164-169.

    [27]

    Wright S J, Yavitt J B, Wurzburger N, et al. Potassium, phosphorus, or nitrogen limit root allocation, tree growth, or litter production in a lowland tropical forest[J]. Ecological Society of America, 2011, 92(8): 1616-1625.
    [28]

    Nobuchi T, Harada H. Physiological features of the white zone of Sugi (Cryptomeria japonica D. Don): cytological structure and moisture content[J]. Mokuzai Gakkaishi, 1983, 29(12): 824-832.
    [29]

    Kuo M L, Arganbright D G. Cellular distribution of extractives in redwood and incense cedar-Part 1. Radial variation in cell-wall extractive content[J]. Holzforschung, 1980, 34(1): 17-22. doi: 10.1515/hfsg.1980.34.1.17
    [30]

    WindC, Arend M, Fromm J. Potassium-dependent cambial growth in poplar[J]. Plant Biology, 2004, 6(1): 30-37. doi: 10.1055/s-2004-815738
    [31]

    Jeffrey A A, Siccama T G, Vogt K A. The effect of soil nutrient status on retranslocation of Ca, Mg and K at the heartwood/sapwood boundary in Atlantic white cedar[J]. Plant and Soil, 1999, 208: 117-123. doi: 10.1023/A:1004512317397
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(6)

Article views(3993) PDF downloads(62) Cited by()

Proportional views

Effects of Soil Physicochemical Properties on Growth and Heartwood Formation of Castanopsis hystrix Plantation

    Corresponding author: JIA Hong-yan, rlzxjhy@163.com
  • 1. The Experimental Centre of Tropical Forestry, Chinese Academy of Forestry, Pingxiang 532600, Guangxi, China
  • 2. Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, Guangdong, China

Abstract:  Objective To assess the relationships between the growth and heartwood formation of Castanopsis hystrix plantation and the physicochemical properties of soil so as to provide evidences for site selection and high-quality heartwood production of C. hystrix. Method Nine plots with size of 20 m × 30 m were set, and the growth of C. hystrix trees within each plot were investigated in middle-aged and near-matured pure C. hystrix plantations at the Experimental Centre of Tropical Forestry, Chinese Academy of Forestry in Pingxiang of Guangxi Zhuang Autonomous Region. The dominant trees were sampled, and the stem analysis were conducted to reveal their growth and heartwood properties. Meanwhile, soil samples were collected from 0-20 cm, 20-40 cm, 40-60 cm and 60-100 cm depths, respectively, to analyze the physical and chemical properties. Grey relationship analysis was applied to study the effects of soil physicochemical properties on the growth and heartwood properties of C. hystrix. Result The ratio of heartwood diameter, height and volume in the middle-aged and near-matured plantations were 24.27% and 49.33%, 44.99% and 45.99%, and 14.94% and 6.88%, respectively. It was indicated from Grey correlation analysis that the diameter at breast height, height and volume showed high coefficients with soil capillary porosity and total porosity in near-matured plantations, while with soil non-capillary porosity and total phosphorus content in middle-aged plantations. The heartwood properties showed high coefficients with the contents of total potassium as well as available potassium and phosphorus in both the middle-aged and near-matured plantations. Conclusion Soil capillary porosity, non-capillary porosity and total porosity are the main factors influencing the growth of C. hystrix plantations, and soil total potassium and available potassium contents are the main factors influencing the heartwood formation of C. hystrix.

  • 土壤理化性质与林木生长、林分生产力密切相关[1],是评价立地生产力的关键指标[2],国内外学者已对土壤理化性质与人工林生长相关性开展了大量研究。曹子林等[3]研究发现,土壤含水量是影响中国沙棘(Hippophae rhamnoides subsp. Sinensis Rousi)人工林生长的主导因子;林文树等[4]分析了吉林天然混交林不同演替阶段优势木生长和土壤理化性质的相关性,发现优势木的平均树高与土壤容重、非毛管孔隙度呈显著负相关,而平均胸径与土壤容重呈显著正相关;杜健等[5]和Watanabe等[6]分别研究了土壤理化性质对13和18年生柚木(Tectona grandis Linn. f.)人工林生长的影响,均发现其生长与土壤全氮、交换性钙离子和镁离子含量密切相关。不同深度土壤的理化性质差异显著,表现出明显的垂直分布特性[7],且林木对不同土层土壤理化性质的响应亦不同。赤桉(Eucalyptus camaldulensis Dehnh.)人工林生长与表层土壤交换性钾离子含量呈显著正相关,而与20~150 cm土壤全氮和交换性钠离子含量呈显著负相关;加勒比松(Pinus caribaea Morelet)人工林生长与表层土有效磷含量呈显著正相关,与20~150 cm土壤含水量呈显著正相关[8]

    心材形成亦受土壤理化性质的显著影响,逐渐为国内外学者关注。崔之益等[9]研究结果表明,土壤含水量影响边材非结构性碳水化合物等次生代谢,从而影响降香黄檀(Dalbergia odorifera T. Chen)心材形成;Kint[10]等发现,欧洲栎(Quercus robur Lieblein)心材比率受立地质量的影响,其中,土壤肥力的贡献率最大,其次是土壤含水量;Bektas等[11]分析了土壤性质对土耳其卡拉布里亚松(Pinus brutia Ten.)心材比率的影响,发现土壤碳酸钙和有机质含量显著影响心材比率。这说明土壤理化性质是影响心材形成不容忽视的重要因素,因此,其研究具有重要的理论和实践意义。

    红锥(Castanopsis hystrix A. DC)是我国热带、南亚热带地区的一个乡土珍优树种[12],其心材色泽佳、纹理美观,材质好,是华南地区广泛使用的家具材、装饰材和工业用材。近年来,国内开展了红锥人工林生长和心材特征及其影响因素研究[13-14];唐继新等[15]对红锥人工林生长过程进行了研究,总结出胸径、树高生长的速生期;卢立华等[16]开展了立地与栽培模式对红锥人工林生长影响的研究,优化了红锥人工林生长的立地和种植模式;蒋燚等[17]通过树干解析探究了红锥心边材变化规律;但红锥人工林生长及心材形成与土壤理化性质的相关性尚未见报道。因此,本研究以红锥中龄林和近熟林为对象,研究其生长和心材特征,分析其与土壤理化性质的相关性,旨在为华南地区红锥人工林立地选择与定向培育提供支撑。

1.   研究区域概况
  • 研究区域位于中国林业科学研究院热带林业实验中心哨平和伏波实验场(22°01′ N~22°06′ N,106°52′ E~106°54′ E),海拔190~500 m,低山丘陵地貌。该地属南亚热带季风气候,年均气温19.9~21.5℃,年降水1 200~1 550 mm。土壤类型主要为山地红壤和紫色土,其成土母岩为花岗岩和紫色砂岩等。

    研究区域内红锥人工林经营管理措施基本一致,采用常规经营,造林不施基肥、不追肥,初植密度为1 667株·hm−2。造林前3年,每年砍草抚育1~2次,经多次间伐后,中龄林林分密度为650株·hm−2,近熟林林分密度为300株·hm−2。造林地前茬为马尾松或杉木人工林。

2.   研究方法
  • 于2013年10月选取林龄17、18、32、34年生红锥人工纯林,共布设9块20 m × 30 m样地。对于红锥林样地内的所有林木,使用胸径尺测定胸径,超声波测高器(Haglöf IV,Sweden)测定树高和枝下高,皮尺测定4个方向的冠幅。根据广西用材林林组划分标准[18],将这些红锥人工林划分为中龄林(17~18年生)和近熟林(32~34年生)。各样地信息见表1

    样地
    Plot No
    林龄
    Age/a
    龄组
    Age class
    海拔
    Altitude/m
    土壤
    Soil
    样地平均
    胸径
    Mean diameter
    of plot/cm
    样地平均
    树高
    Mean height
    of plot/m
    样地平均
    材积
    Mean volume
    of plot/m3
    优势木
    胸径
    Mean diameter
    of dominant/cm
    优势木
    树高
    Mean height
    of dominant/m
    优势木
    材积
    Mean volume
    of dominant/m3
    SP1 17 中龄林 314 紫色土 12.50 10.50 0.07 14.30 11.45 0.09
    SP2 17 中龄林 227 紫色土 13.15 12.06 0.08 18.40 14.80 0.19
    FB1 18 中龄林 522 山地红壤 15.42 13.08 0.12 18.40 15.65 0.20
    FB2 18 中龄林 304 山地红壤 18.86 14.20 0.43 20.15 16.55 0.26
    SP3 32 近熟林 265 紫色土 24.49 19.48 0.43 26.30 20.40 0.52
    SP4 32 近熟林 409 紫色土 21.10 18.32 0.31 30.70 21.00 0.72
    SP5 34 近熟林 378 紫色土 22.41 22.83 0.43 30.75 25.85 0.89
    SP6 34 近熟林 398 紫色土 26.31 27.80 0.71 30.10 19.45 0.64
    SP7 34 近熟林 320 紫色土 24.40 28.24 0.63 25.95 29.00 0.72

    Table 1.  Information of sampling plots in Castanopsis hystrix plantations

  • 根据调查结果,每块样地内各选取2株优势木,共计18株进行树干解析。解析木标记北方向后,定向伐倒。按常规方法进行树干解析,分别于根茎处以上0.3、1.3、2 m高度处截取圆盘,此后按2 m区分段截取圆盘,圆盘厚度约5 cm,每个圆盘标明高度位置及北方向。

    圆盘于室内自然干燥,逐个打磨、抛光后,标出东、西、南、北4向,采用图像扫描对比法[19]判读心材和边材,测量每个圆盘东、西、南、北方向去皮半径和心材半径。以1.3 m处圆盘东西和南北方向上的去皮直径和心材直径的平均值作为优势木直径和心材直径,记为Dd;以解析木梢头高度作为优势木树高,记为H,以心材最后出现的圆盘高度定为心材高度,记为h。利用分段材积[20]计算出优势木及心材的材积,结合上述测量值分别计算心材直径比、高度比和材积比,其计算公式如下:

    rd=d/D×100%;rh=h/H×100%;rv=v/V×100%

    式中:VDH分别为单株材积、胸径和树高;vdh分别为心材材积、胸高处直径和高度;L为树段长度;SS1SS2为树段上、下圆盘断面积;sr1sr2分别为树段上、下圆盘断面的平均半径;SH1SH2为树段上、下圆盘心材断面积;hr1hr2分别为树段上、下圆盘断面心材平均半径;rdrhrv分别为心材直径、高度和材积比。

  • 沿样地对角线设置3个5 m × 5 m的样方,每个样方挖取深1 m的土壤剖面,用环刀分别取0~20、20~40、40~60、60~100 cm土层深度的土样,带回实验室用于土壤物理性质测定[21];每个土层另取1 kg土样带回实验室用于化学性质测定,采用电位法测定土壤pH值,凯氏法测定全氮含量,碱解扩散法测定水解性氮含量,碱溶法测定全磷含量,双酸法测定有效磷含量,碱熔法测定全钾含量,乙酸铵浸提法测定速效钾含量,重铬酸钾-外加热法测定土壤有机碳含量[21]

  • 数据采用Microsoft Excel 2010进行统计整理,用SPSS19.0单因素方差分析对红锥人工林不同土层土壤理化性质进行统计分析。

    运用灰色系统理论关联分析法分析土壤理化性质对红锥人工林生长和心材形成的影响。依据人工林生长、心材特征以及土壤理化性质构建数列为:Xi = {性状,pH,全氮,水解氮,全磷,有效磷,全钾,速效钾,有机碳,含水量,土壤容重,最大持水量,毛管持水量,最小持水量,非毛管孔隙度,毛管孔隙度,总孔隙度} = {Xi(k)|i = 0,1,2;k = 1,2,3······16}。采用均值法数列进行无量纲化处理,以X0为参考数列,X1X2··· X16为比较数列,计算出参考数列和比较数列的关联系数( £i (k))和关联度( γi ),其计算公式分别为[22]

    ${{{\gamma }}_{{i}}}{{ = }}\dfrac{{{1}}}{{{n}}}\displaystyle \sum \nolimits_{{{k = 1}}}^{{n}} {\text{£}_i}\left( k \right)$

    式中:minmin|x0(k)-xi(k)|为参考数列x0与比较数列xi的二级最小绝对差,maxmax|x0(k)-xi(k)|为参考数列x0与比较数列xi的二级最大绝对差;x0为参考数列,xi为比较数列;i为生长及心材特征,k为土壤理化性质;ρ为分辨系数,其值为0.5;i(k)为参考数列x0与比较数列xi间的关联系数,γi为参考数列x0与比较数列xi间的关联度,n为土壤理化性质总数,其值为16。

3.   结果与分析
  • 表2可知:近熟林优势木的平均胸径、树高和材积分别比中龄林高47.63%、62.5%和93.33%,而心材直径、高度和材积分别为中龄林的2.97、1.91、9.26倍,其相应比率则分别为中龄林的2.03、1.02、2.17倍。

    龄组
    Age
    class
    平均胸径
    Mean
    diameter/
    cm
    平均树高
    Mean
    height/
    m
    平均材积
    Mean
    volume/
    m3
    心材直径
    Heartwood
    diameter/
    cm
    心材高度
    Heartwood
    height/
    m
    心材材积
    Heartwood
    volume/
    m3
    心材直径比
    Heartwood
    diameter
    ratio/%
    心材高度比
    Heartwood
    diameter
    ratio/%
    心材材积比
    Heartwood
    volume
    ratio/%
    中龄林
    Mid-aged
    plantation
    16.86 ± 3.2012.8 ± 3.030.15 ± 0.084.10 ± 2.025.51 ± 2.890.0068 ± 0.0124.27 ± 9.3844.99 ± 22.616.88 ± 6.51
    近熟林
    Near-mature
    plantation
    24.89 ± 3.3520.8 ± 2.860.29 ± 0.2712.19 ± 2.9510.53 ± 5.300.063 0 ± 0.0449.33 ± 11.9845.99 ± 21.4214.94 ± 8.33

    Table 2.  Analysis on growth and heartwood properties of Castanopsis hystrix

  • 表3可知:随土层深度的增加,中龄林土壤容重及近熟林土壤含水量总体表现为增加趋势,中龄林土壤的最大持水量、非毛管空隙度及近熟林土壤的非毛管孔隙度均呈递减趋势;最小持水量、毛管持水量、毛管孔隙度和总孔隙度在4个土层间相近,说明这些因子在空间上变化较小。

    物理性质
    Physical properties
    龄组
    Age class
    土层 Soil layer/cm均值
    Mean
    0~2020~4040~6060~100
    含水量
    Moisture content/%
    中龄林 21.81 ± 6.46 21.54 ± 3.65 22.59 ± 3.89 24.01 ± 4.06 22.49 ± 4.61
    近熟林 22.32 ± 3.87 a 24.68 ± 4.74 ab 25.53 ± 4.36 ab 26.27 ± 4.85 b 24.70 ± 4.61
    土壤容重
    Soil bulk density/(g·km−3
    中龄林 1.29 ± 0.11 a 1.45 ± 0.08 b 1.49 ± 0.09 b 1.51 ± 0.09 b 1.43 ± 0.13
    近熟林 1.31 ± 0.12 1.41 ± 0.13 1.40 ± 0.14 1.39 ± 0.14 1.37 ± 0.14
    最大持水量
    Maximum water-holding capacity/%
    中龄林 36.32 ± 5.08 b 30.52 ± 2.91 a 30.11 ± 3.68 a 29.28 ± 3.47 a 31.56 ± 4.68
    近熟林 37.11 ± 7.88 31.85 ± 7.02 32.02 ± 6.79 33.15 ± 6.22 33.53 ± 7.13
    最小持水量
    Minimum field capacity/%
    中龄林 24.28 ± 3.55 22.43 ± 2.61 23.22 ± 3.83 24.25 ± 4.13 23.55 ± 3.55
    近熟林 25.32 ± 5.64 24.68 ± 5.70 25.92 ± 5.40 27.28 ± 5.17 25.80 ± 5.42
    毛管持水量
    Capliary moisture capacity/%
    中龄林 32.06 ± 4.55 b 27.29 ± 2.23 a 27.06 ± 3.00 a 27.52 ± 3.54 a 28.48 ± 3.93
    近熟林 32.87 ± 7.26 29.63 ± 6.16 30.23 ± 6.08 31.58 ± 5.73 31.08 ± 6.30
    非毛管孔隙度
    Non-capillary porosity/%
    中龄林 5.42 ± 1.06 4.60 ± 2.16 4.49 ± 1.86 2.65 ± 1.32 4.29 ± 1.90
    近熟林 5.41 ± 2.87 b 3.01 ± 2.19 a 2.42 ± 1.40 a 2.12 ± 1.19 a 3.24 ± 2.36
    毛管孔隙度
    Capillary porosity/%
    中龄林 40.8 ± 3.00 39.33 ± 2.39 39.95 ± 2.53 41.15 ± 3.04 40.31 ± 2.76
    近熟林 42.21 ± 5.85 41.01 ± 5.31 41.46 ± 5.08 43.07 ± 4.48 41.94 ± 5.13
    总孔隙度
    Total porosity/%
    中龄林 46.22 ± 3.06 43.93 ± 2.63 44.44 ± 3.24 43.80 ± 0.78 44.60 ± 3.00
    近熟林 47.62 ± 6.05 44.02 ± 6.02 43.87 ± 5.76 45.19 ± 5.05 45.18 ± 5.79
      注:同行不同小写字母表示不同土层间差异显著(P < 0.05)。下同。
      Note: Different lowerease alphabets in the same line indicate the property has significant different in different soil layers (P < 0.05). The same below.

    Table 3.  Comparison on soil physical properties between different soil layers for mid-aged and near-mature plantations of Castanopsis hystrix

    方差分析结果(表3)表明:中龄林0~20 cm土层的土壤容重、最大持水量、毛管持水量及近熟林0~20 cm土层的非毛管孔隙度与其它3个土层间差异显著(P < 0.05);近熟林0~20 cm土层的土壤含水量与60~100 cm土层的差异显著;最小持水量、毛管孔隙度和总孔隙度在中龄林和近熟林4个土层间均差异不显著(P > 0.05)。

  • 表4表明:中龄林和近熟林土壤pH值、全钾含量随土层深度增加而增加,而全氮、水解氮、有效磷、速效钾和有机碳含量则呈递减趋势。中龄林和近熟林0~20 cm土层的土壤全氮、水解氮以及中龄林0~20 cm土层的速效钾、有机碳含量与其他3个土层之间差异显著(P < 0.05);中龄林和近熟林0~20 cm土层的土壤pH值均与60~100 cm土层的差异显著(P < 0.05);全磷和全钾在中龄林和近熟林4个土层间均差异不显著(P > 0.05)。

    化学性质
    Chemical properties
    龄组
    Age class
    土层 Soil layer/cm均值
    Mean
    0~2020~4040~6060~100
    pH值
    pH value
    中龄林 4.33 ± 0.19 a 4.34 ± 1.52 a 4.43 ± 0.18 ab 4.54 ± 0.16 b 4.41 ± 0.19
    近熟林 4.41 ± 0.28 a 4.45 ± 0.31 ab 4.65 ± 0.36 ab 4.74 ± 0.37 b 4.56 ± 0.35
    全氮
    Total N/(g·kg−1)
    中龄林 1.01 ± 0.42 b 0.66 ± 0.06 a 0.59 ± 0.07 a 0.56 ± 0.10 a 0.71 ± 0.28
    近熟林 1.04 ± 0.26 b 0.79 ± 0.18 a 0.69 ± 0.21 a 0.63 ± 0.24 a 0.79 ± 0.27
    水解氮
    Hydrolyzable N/(mg·kg−1)
    中龄林 101.83 ± 35.71 b 67.37 ± 9.80 a 55.36 ± 9.93 a 53.38 ± 7.59 a 69.48 ± 27.26
    近熟林 120.51 ± 30.83 b 86.90 ± 22.79 a 77.22 ± 22.38 a 70.81 ± 21.47 a 88.86 ± 30.82
    全磷
    Total P/(g·kg−1)
    中龄林 0.21 ± 0.05 0.20 ± 0.02 0.21 ± 0.02 0.20 ± 0.20 0.21 ± 0.03
    近熟林 0.27 ± 0.06 0.25 ± 0.06 0.24 ± 0.06 0.26 ± 0.06 0.25 ± 0.06
    有效磷
    Available P/(mg· kg−1)
    中龄林 1.57 ± 1.09 b 0.66 ± 0.20 ab 0.39 ± 0.17 a 0.31 ± 0.17 a 0.73 ± 0.74
    近熟林 1.02 ± 0.21 c 0.48 ± 0.11 b 0.26 ± 0.10 a 0.21 ± 0.14 a 0.49 ± 0.35
    全钾
    Total P/(g·kg−1)
    中龄林 4.08 ± 2.10 5.03 ± 2.62 5.78 ± 3.16 6.36 ± 3.66 5.31 ± 2.98
    近熟林 3.20 ± 1.39 3.51 ± 1.91 3.91 ± 2.53 4.04 ± 3.19 3.67 ± 2.32
    速效钾
    Available K/(mg· kg−1)
    中龄林 30.42 ± 10.12 b 19.54 ± 7.05 a 17.21 ± 8.35 a 17.34 ± 8.54 a 21.13 ± 9.96
    近熟林 41.06 ± 26.75 34.64 ± 28.26 34.38 ± 29.77 34.15 ± 31.11 36.06 ± 2.89
    有机碳
    Organic carbon/(g·kg−1)
    中龄林 14.38 ± 8.74 b 6.77 ± 0.99 a 5.01 ± 1.01 a 4.57 ± 0.88 a 7.68 ± 5.87
    近熟林 14.58 ± 5.42 c 7.33 ± 2.29 bc 5.69 ± 1.88 b 4.75 ± 1.68 a 8.09 ± 4.99

    Table 4.  Comparison on ssoil chemical properties between different soil layers for mid-aged and near-mature plantations of Castanopsis hystrix

  • 表5可知:中龄林内0~20 cm土层,土壤全磷含量是胸径、树高和材积的最主要影响因子;20~40 cm土层,非毛管孔隙度是胸径、树高和材积的最主要影响因子;40~60 cm土层,全磷含量是胸径的最主要影响因子,而非毛管空隙度是树高和材积的最主要影响因子;60~100 cm土层,全磷含量是胸径、材积的最主要影响因子,有机碳含量是树高的最主要影响因子。

    龄组
    Age class
    理化性质
    Physicochemical
    Properties
    土层 Soil layer/cm
    0~2020~4040~6060~100
    胸径 D树高 H材积 V胸径 D树高 H材积 V胸径 D树高 H材积 V胸径 D树高 H材积 V
    中龄林
    Mid-aged
    plantation
    A 0.783 0.709 0.724 0.800 0.725 0.750 0.796 0.735 0.732 0.816 0.745 0.741
    B 0.720 0.718 0.720 0.837 0.764 0.748 0.792 0.727 0.717 0.718 0.660 0.713
    C 0.755 0.763 0.742 0.852 0.798 0.765 0.845 0.799 0.739 0.829 0.800 0.742
    D 0.848 0.845 0.761 0.845 0.800 0.758 0.856 0.804 0.747 0.847 0.798 0.751
    E 0.574 0.611 0.585 0.722 0.680 0.751 0.722 0.677 0.700 0.684 0.708 0.665
    F 0.605 0.539 0.586 0.624 0.563 0.603 0.597 0.555 0.597 0.590 0.548 0.588
    G 0.743 0.670 0.724 0.689 0.638 0.636 0.614 0.559 0.603 0.603 0.557 0.605
    H 0.590 0.617 0.653 0.823 0.788 0.761 0.793 0.797 0.735 0.798 0.808 0.740
    I 0.776 0.801 0.750 0.793 0.772 0.756 0.753 0.734 0.700 0.758 0.716 0.714
    J 0.772 0.710 0.708 0.809 0.733 0.744 0.802 0.746 0.730 0.813 0.757 0.743
    K 0.798 0.771 0.749 0.812 0.743 0.753 0.773 0.730 0.728 0.777 0.712 0.732
    L 0.801 0.774 0.750 0.805 0.730 0.749 0.759 0.712 0.719 0.764 0.699 0.726
    M 0.783 0.752 0.739 0.766 0.707 0.735 0.716 0.685 0.688 0.727 0.680 0.701
    N 0.793 0.712 0.721 0.870 0.866 0.776 0.841 0.849 0.762 0.753 0.770 0.743
    O 0.823 0.740 0.727 0.822 0.729 0.745 0.790 0.717 0.723 0.789 0.713 0.732
    P 0.819 0.737 0.726 0.828 0.741 0.749 0.804 0.735 0.726 0.808 0.727 0.731
    近熟林
    Near-mature
    plantation
    A 0.833 0.786 0.695 0.841 0.793 0.722 0.853 0.809 0.726 0.923 0.859 0.777
    B 0.762 0.761 0.738 0.771 0.796 0.761 0.760 0.829 0.741 0.815 0.859 0.781
    C 0.767 0.764 0.742 0.769 0.760 0.756 0.762 0.791 0.728 0.826 0.815 0.778
    D 0.760 0.788 0.719 0.763 0.788 0.747 0.779 0.806 0.739 0.854 0.859 0.794
    E 0.813 0.834 0.740 0.803 0.754 0.705 0.675 0.693 0.664 0.731 0.666 0.674
    F 0.585 0.592 0.639 0.569 0.565 0.627 0.601 0.574 0.619 0.691 0.666 0.641
    G 0.480 0.496 0.576 0.443 0.444 0.534 0.478 0.491 0.547 0.617 0.652 0.663
    H 0.715 0.657 0.662 0.747 0.722 0.673 0.728 0.768 0.699 0.816 0.785 0.764
    I 0.773 0.782 0.738 0.795 0.812 0.733 0.815 0.854 0.779 0.902 0.866 0.824
    J 0.824 0.806 0.697 0.838 0.800 0.721 0.851 0.809 0.717 0.911 0.843 0.769
    K 0.789 0.765 0.757 0.797 0.801 0.771 0.773 0.834 0.761 0.883 0.877 0.810
    L 0.801 0.744 0.758 0.793 0.785 0.767 0.782 0.839 0.769 0.886 0.877 0.813
    M 0.754 0.726 0.754 0.780 0.767 0.758 0.787 0.840 0.773 0.887 0.870 0.819
    N 0.566 0.556 0.585 0.651 0.701 0.750 0.677 0.642 0.677 0.778 0.823 0.769
    O 0.830 0.810 0.749 0.821 0.836 0.770 0.822 0.884 0.780 0.933 0.914 0.812
    P 0.809 0.825 0.781 0.824 0.844 0.777 0.812 0.874 0.776 0.932 0.918 0.811
      注:A为 pH值;B为全氮;C为水解氮;D为全磷;E为有效磷;F为全钾;G为速效钾;H为有机碳;I为含水量;J为土壤容重;K为最大持水量;L为毛管持水量;M为最小持水量;N为非毛管空隙度;O为毛管空隙度;P为总空隙度。下同。
      Notes: A means pH value; B means total nitrogen; C means hydrolysable nitrogen; D means total phosphorus; E means available phosphorus; F means total potassium; G means rapidly available potassium; H means organic carbon; I means moisture content; J means soil bulk density; K means maximum water-holding capacity; L means capillary moisture capacity; M means minimum field capacity; N means non-capillary porosity; O means capillary porosity; P means total porosity。The same below.

    Table 5.  Gray correlation between soil physicochemical and growth of Castanopsis hystrix plantations

    近熟林0~20 cm土层,土壤pH值、有效磷含量和总空隙度分别是优势木胸径、树高和材积的最主要影响因子;20~40 cm土层,土壤的pH值是胸径的最主要影响因子,而总孔隙度是树高和材积的最主要影响因子;40~60 cm土层,土壤的pH值是胸径的最主要影响因子,毛管孔隙度是树高和材积的最主要影响因子;60~100 cm土层,土壤毛管孔隙度、总空隙度和含水量分别是胸径、树高和材积的最主要影响因子。

  • 表6可知:中龄林0~20 cm土层,土壤速效钾含量是影响心材直径和高度的最主要因子,而全磷含量是影响心材材积的最主要因子;20~40 cm土层,土壤有效磷含量是影响心材直径和高度的最主要因子,而非毛管孔隙度是影响心材材积的最主要因子;40~60 cm土层,土壤非毛管孔隙度是影响心材直径和材积的最主要因子,而有效磷含量是影响心材高度的最主要因子;60~100 cm土层,土壤速效钾含量是影响心材直径、高度的最主要因子,而全磷含量是影响心材材积的最主要因子。

    龄组
    Age class
    理化性质
    Physicochemical
    Properties
    土层 Soil layer/cm
    0~2020~4040~6060~100
    直径 d高度 h材积 v直径 d高度 h材积 v直径 d高度 h材积 v直径 d高度 h材积 v
    中龄林
    Mid-aged
    plantation
    A 0.707 0.724 0.724 0.675 0.615 0.750 0.661 0.647 0.732 0.675 0.620 0.741
    B 0.657 0.721 0.720 0.661 0.625 0.748 0.627 0.664 0.717 0.639 0.585 0.713
    C 0.694 0.714 0.742 0.688 0.634 0.764 0.653 0.648 0.739 0.674 0.636 0.742
    D 0.724 0.726 0.761 0.672 0.627 0.758 0.669 0.647 0.747 0.694 0.636 0.751
    E 0.579 0.604 0.585 0.714 0.738 0.751 0.691 0.774 0.699 0.661 0.682 0.665
    F 0.731 0.775 0.586 0.658 0.611 0.603 0.654 0.648 0.597 0.695 0.669 0.588
    G 0.798 0.784 0.724 0.702 0.591 0.636 0.688 0.686 0.604 0.725 0.701 0.605
    H 0.618 0.656 0.653 0.644 0.598 0.761 0.625 0.653 0.734 0.660 0.652 0.740
    I 0.677 0.746 0.750 0.627 0.609 0.756 0.596 0.622 0.700 0.623 0.600 0.714
    J 0.719 0.743 0.708 0.675 0.631 0.743 0.675 0.664 0.730 0.697 0.625 0.743
    K 0.687 0.695 0.749 0.656 0.605 0.753 0.621 0.628 0.728 0.639 0.617 0.731
    L 0.689 0.695 0.750 0.653 0.611 0.749 0.619 0.633 0.719 0.637 0.616 0.726
    M 0.677 0.696 0.739 0.625 0.600 0.735 0.605 0.619 0.688 0.628 0.591 0.701
    N 0.684 0.722 0.721 0.702 0.596 0.776 0.697 0.657 0.762 0.708 0.667 0.743
    O 0.697 0.724 0.727 0.659 0.625 0.745 0.635 0.653 0.723 0.656 0.626 0.732
    P 0.696 0.724 0.726 0.661 0.619 0.749 0.637 0.648 0.726 0.658 0.628 0.731
    近熟林
    Near-mature
    plantation
    A 0.789 0.678 0.666 0.721 0.657 0.677 0.754 0.666 0.654 0.793 0.723 0.694
    B 0.754 0.594 0.649 0.739 0.596 0.680 0.779 0.607 0.661 0.790 0.665 0.677
    C 0.769 0.609 0.659 0.749 0.611 0.689 0.783 0.606 0.691 0.838 0.691 0.673
    D 0.828 0.635 0.651 0.769 0.627 0.677 0.802 0.633 0.674 0.825 0.697 0.696
    E 0.791 0.641 0.657 0.658 0.710 0.664 0.626 0.727 0.626 0.671 0.697 0.599
    F 0.614 0.814 0.746 0.567 0.789 0.728 0.623 0.776 0.698 0.653 0.743 0.678
    G 0.614 0.621 0.698 0.467 0.540 0.669 0.524 0.554 0.661 0.651 0.663 0.695
    H 0.743 0.570 0.650 0.714 0.582 0.682 0.755 0.594 0.686 0.818 0.674 0.723
    I 0.817 0.619 0.663 0.770 0.616 0.689 0.804 0.632 0.690 0.848 0.706 0.716
    J 0.770 0.687 0.672 0.715 0.660 0.678 0.750 0.687 0.675 0.686 0.692 0.634
    K 0.788 0.614 0.656 0.754 0.602 0.678 0.772 0.610 0.665 0.832 0.685 0.689
    L 0.776 0.614 0.664 0.746 0.592 0.672 0.783 0.613 0.672 0.828 0.685 0.691
    M 0.774 0.607 0.667 0.742 0.591 0.680 0.789 0.611 0.682 0.822 0.686 0.698
    N 0.681 0.490 0.570 0.654 0.683 0.714 0.615 0.498 0.587 0.758 0.651 0.682
    O 0.809 0.641 0.673 0.754 0.605 0.674 0.805 0.628 0.682 0.847 0.698 0.703
    P 0.821 0.632 0.665 0.768 0.610 0.679 0.798 0.624 0.674 0.851 0.501 0.700

    Table 6.  Gray correlation between soil physicochemical and heartwood properties of Castanopsis hystrix plantations

    近熟林0~20 cm土层,土壤全磷含量是影响心材直径的最主要因子,而全钾含量是影响心材高度和材积的最主要因子;20~40 cm土层,土壤含水量是影响心材直径的最主要因子,而全钾含量是影响心材高度和材积的最主要因子;40~60 cm土层,土壤毛管孔隙度是影响心材直径的最主要因子,而全钾含量是影响心材高度和材积的最主要因子;60~100 cm土层,土壤总孔隙度、全钾含量和有机碳含量分别是影响心材直径、高度和材积的最主要因子。

4.   讨论
  • 在本研究中,红锥近熟林(32、34年生)优势木平均胸径、树高和材积分别为24.89 cm、20.8 m和0.29 m3,而心材相应的直径、高度、材积分别为12.19 cm、10.53 m和0.063 m3,其心材比分别为49.33%、45.99%、14.94%,远低于广西凭祥31年生柚木[23]和福建建瓯37年生红豆树(Ormosia hosiei Hemsl. et Wils.)[24]。此外,近熟林心材平均高度约10 m,远不及相近年龄的柚木[23]。由此可见,10 m以下树干是红锥心材培育的目标区段,是高价值红锥人工林定向培育的核心。

    本研究发现,影响红锥人工林生长的最主要的土壤物理因子是毛管孔隙度、非毛管空隙度、总孔隙度和含水量,而中国沙棘、柚木和美洲黑杨(Populus deltoides W.Bartram ex Marshall)生长的限制性因子却是土壤质地和土壤含水量[3625]。许多研究表明,毛管孔隙度、非毛管空隙度和总孔隙度与土壤质地和土壤含水量高度相关,Seddighi等[25]研究结果表明,土壤质地影响土壤含水量、土壤容重和孔隙度等理化性质,进而影响林木生长。本研究中,全磷和有效磷含量是影响广西凭祥红锥人工林胸径和树高生长的最主要的土壤化学因子;而对于该地西南桦(Betula alnoides Buch. -ham. ex D. Don)人工林而言,有机质、有效氮和全钾含量是影响其生长的限制性因子[26]。Wright等[27]研究结果表明,磷元素是热带地区林分胸径生长和木材产量的限制性因子。红锥和西南桦人工林间的这种差异,可能与西南桦对有效磷含量低的土壤具有较强的适应性有关[26]

    土壤理化性质与红锥心材形成灰色关联分析结果表明,20~40 cm土层的土壤含水量是影响红锥近熟林心材直径的主要因子。土壤含水量可改变树体组织水分含量[9],尤其是边材、心材及其过度区水分含量,其分布特征是驱使心材形成的原因[28]。水分胁迫还影响边材薄壁细胞生理活性及次生代谢反应,引起抽提物及次生代谢产物的积累[29],从而调控心材形成。灰色关联分析结果还表明,土壤化学性质中的全钾和速效钾含量与红锥心材形成关联系数高,这说明全钾和速效钾含量是影响红锥心材形成的主要因子,其主要原因与钾离子参与了林木多种代谢过程、调节渗透势促进离子吸收、激活酶活性、增加木质部导管体积等有关[30]。Jeffrey等[31]研究表明,白杉(Chamaecyparis thyoides (L.) Mills.)心材形成时,钾离子从濒死边材转移至边材,且钾离子转移数量反应了土壤养分状况,此亦侧面反映出土壤钾离子含量与心材形成之间存在着必然联系,是心材形成必不可缺少的养分。虽然如此,目前对于土壤钾离子含量对珍贵树种心材形成影响机理尚需进一步深入研究。

5.   结论
  • 红锥是我国华南地区栽培面积较广的珍贵用材树种,心材是高价值红锥人工林定向培育的关键。土壤毛管孔隙度、总孔隙度和非毛管孔隙度与土壤全钾、速效钾和有效磷含量是影响红锥人工林生长和心材形成的主要的土壤因子。选择质地疏松,全钾、速效钾和有效磷含量高的土壤,并合理补施磷肥和钾肥,可加速红锥心材形成。

    致谢:承蒙曾杰研究员指导研究方案和修改论文,王春胜博士指导数据处理,特致谢忱!

Reference (31)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return