• 中国中文核心期刊
  • 中国科学引文数据库(CSCD)核心库来源期刊
  • 中国科技论文统计源期刊(CJCR)
  • 第二届国家期刊奖提名奖

Citation:

Light Responses of Nitraria tangutorum to Rain Addition Treatments

  • Received Date: 2011-04-24
  • Light response curves of a typical desert plant Nitraria tangutorum under four rain addition treatments (+25%, 50%, 75% and 100% of local mean annual precipitation) were measured with Li-6400xt Portable Photosynthesis Analyzer at the eastern edge of the Ulanbuh Desert, Dengkou, Inner Mongolia. The photosynthesis curves of light intensity were simulated by non-rectangle hyperbolic function and the parameters of photosynthesis were calculated to explore light response characteristics of N. tangutorum to different rain addition treatments. The parameters include the maximum net photosynthetic rate (Amax), apparent quantum yields (AQY), dark respiratory rates (Rd), light compensation points (LCP) and light saturation points (LSP). Under the controlled condition, the Amax, AQY, Rd, LCP and LSP are 13.41 μmol·m-2·s-1, 0.029 mol·mol-1, 0.61 μmol·m-2·s-1, 20.63 μmol·m-2·s-1 and 481.85 μmol·m-2·s-1, respectively. The results show that the net photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (Gs), the maximum net photosynthetic rate, apparent quantum efficiency and dark respiration rate increased, but the water use efficiency decreased with the rain addition treatments. Therefore, the rain addition changed the physiological characteristics and improved photosynthetic capacity level of N. tangutorum in varying degrees. The results also show that stomatal conductance is the main factor limiting the photosynthetic rate at the stage of light saturation.
  • 加载中
  • [1]

    Trenberth K E. Atmospheric moisture residence times and cycling:implications for rainfall rates and climate change[J]. Climatic Change, 1998, 39:667-694
    [2]

    Trenberth K E. Conceptual framework for changes of extremes of the hydrological cycle with climate change[J]. Climatic Change, 1999, 42:327-339
    [3]

    Intergovernmental Panel on Climate Change (IPCC). IPCC Fourth Assessment Report-Climate Change 2007:The Physical Science Basis[Z]. United Kingdom:Cambridge University Press, 2007
    [4]

    Knapp A K, Fay P A, Blair J M, et al. Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland[J]. Science, 2002, 298:2202-2205
    [5]

    Fay P A, Carlisle J D, Knapp A K, et al. Productivity responses to altered rainfall patterns in a C4-dominated grassland[J]. Oecologia, 2003, 137:245-251
    [6]

    Sarah B, Jana L H, Elise P, et al. Elevated carbon dioxide alters impacts of precipitation pulses on ecosystem photosynthesis and respiration in a semi-arid grassland[J]. Oecologia, 2009, 162(3):791-802
    [7]

    Comic G.Drought stress and high light effects on leaf photosynthesis[M]//Baker N R and Bowyer J R. Photoinhibition of Photosynthesis:from Molecular Mechanisms to the Field.Oxford:Bios Scientific Publishers,1994:297-313
    [8]

    Mc Donmd A J S,Davies W J.Keeping in touch:responses of the whde plant to deficits in water and nitrogen supply[J]. Advances in Botanical Research, 1996, 22:228-300
    [9]

    Golluscio R A, Sala O E, Lauenroth W K. Differential use of large summer rainfall events by shrubs and grasses:A manipulative experiment in the Patagonian steppe[J]. Oecologia, 1998,115:17-25
    [10]

    Schwinning S, Davis K, Richardson L, et al. Deuterium enriched irrigation indicates different forms of rain use in shrub/grass species of the Colorado Plateau[J]. Oecologia, 2002, 130:345-355
    [11]

    Gebauer R L E, Schwinning S, Ehleringer J R. Interspecific competition and resource pulse utilization in a cold desert community[J]. Ecology, 2003, 83:2602-2616
    [12]

    Schwinning S, Starr B I, Ehleringer J R. Dominant cold desert plants do not partition warm season precipitation by event size[J]. Oecologia, 2003, 136:252-260
    [13] 李清河,张景波,李慧卿,等.不同种源白刺幼苗生理生长对水分梯度的响应差异[J].林业科学,2008,44(1):52-56

    [14] 张锦春,赵 明,张应昌,等.灌溉植被梭梭、白刺光合蒸腾特性及影响因素研究[J].西北植物学报,2005,25(1):70-76

    [15] 何炎红,郭连生,田有亮.白刺叶不同水分状况下光合速率及其叶绿素荧光特性的研究[J].西北植物学报,2005,25(11):2226-2233

    [16] 赵纪东,傅 华,吴彩霞.水分胁迫对白刺幼苗生物量和渗透调节物质积累的影响[J].西北植物学报,2006,26(9):1788-1793

    [17] 肖春旺,张新时.模拟降水量变化对毛乌素油蒿幼苗生理生态过程的影响研究[J].林业科学,2001,37(1):15-22

    [18]

    Xu H, Li Y. Water-use strategy of three central Asian desert shrubs and their responses to rain pulse events[J]. Plant and Soil, 2006, 285(1-2):5-17
    [19] 许 洋,田 林,许传森.一种全光自动喷雾扦插育苗装置.中国:CN200720191044.2,2007

    [20] 刘宇锋,萧浪涛,童建华,等.非直线双曲线模型在光合光响应曲线数据分析中的应用[J].中国农学通报,2005,21(8):76-79

    [21]

    Zou T, Li Y, Xu H, et al. Responses to precipitation treatment for Haloxylon ammodendron growing on contrasting textured soils[J]. Ecological Research, 2009,25(1):185-194
    [22] 叶子飘,于 强.光合作用光响应模型的比较[J].植物生态学报,2008,32(6):1356-1361

    [23]

    Hiroyuki M, Hibiki N, Masaki U, et al. Photosynthetic characteristics and biomass distribution of the dominant vascular plant species in a high Arctic tundra ecosystem, Ny-Alesund, Svalbard:implications for their role in ecosystem carbon gain[J]. Journal of Plant Research, 2008, 121(2):137-145
    [24] 伍维模,李志军,罗青红,等.土壤水分胁迫对胡杨、灰叶胡杨光合作用-光响应特性的影响[J].林业科学,2007,43(5):30-35

    [25] 李合生.现代植物生理学[M].北京:高等教育出版社,2002:130-135

    [26] 郭春芳,孙 云,张木清.土壤水分胁迫对茶树光合作用-光响应特性的影响[J].中国生态农业学报,2008,16(6):1413-1418

    [27] 张中峰,黄玉清,莫 凌,等.岩溶区4种石山植物光合作用的光响应[J].西北林学院学报,2009,24(1):44-48

    [28] 高 松,苏培玺,严巧娣.C4荒漠植物猪毛菜与木本猪毛菜的叶片解剖结构及光合生理特征[J].植物生态学报,2009,33(2):347-354

    [29] 韩 刚,赵 忠.不同土壤水分下4种沙生灌木的光合光响应特性[J].生态学报,2010,30(15):4019-4026

    [30] 常宗强,冯 起,司建华,等.阿拉善雅布赖风沙区不同水分条件下白刺叶片的水分生理特征[J].冰川冻土,2010,32(5):1015-1021

    [31] 韩建秋.干旱胁迫对白三叶光合参数日变化的影响[J].中国农学通报,2010,26(12):143-146

    [32]

    Atsuhiro I, Hisakazu F, Yachiho N, et al. Stomatal closure induced by high vapor pressure deficit limited midday photosynthesis at the canopy top of Fagus crenata Blume on Naeba mountain in Japan[J]. Trees, 2004, 18(5):147-154
    [33] 高 丽,杨 劼,刘瑞香.不同土壤水分条件下中国沙棘雌雄株光合作用、蒸腾作用及水分利用效率特征[J].生态学报,2009,29(11):6025-6034

    [34] 李林芝,张德罡,辛晓平.呼伦贝尔草甸草原不同土壤水分梯度下羊草的光合特性[J].生态学报,2009,29(10):5271-5279

    [35] 吴建国.降雨量和温度变化对麻花艽叶片光合作用及相关生理参数的影响[J].中国草地学报,2010,32(5):73-79

    [36]

    Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis[J]. Annual Review of Plant Physiology, l982, 33:3l7-345
    [37] 许大全.光合作用测定及研究中一些值得注意的问题[J].植物生理学通讯,2006,42(6):1163-1167

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article views(3385) PDF downloads(1519) Cited by()

Proportional views

Light Responses of Nitraria tangutorum to Rain Addition Treatments

  • 1. Institute of Desertification Studies, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Beijing 100091, China

Abstract: Light response curves of a typical desert plant Nitraria tangutorum under four rain addition treatments (+25%, 50%, 75% and 100% of local mean annual precipitation) were measured with Li-6400xt Portable Photosynthesis Analyzer at the eastern edge of the Ulanbuh Desert, Dengkou, Inner Mongolia. The photosynthesis curves of light intensity were simulated by non-rectangle hyperbolic function and the parameters of photosynthesis were calculated to explore light response characteristics of N. tangutorum to different rain addition treatments. The parameters include the maximum net photosynthetic rate (Amax), apparent quantum yields (AQY), dark respiratory rates (Rd), light compensation points (LCP) and light saturation points (LSP). Under the controlled condition, the Amax, AQY, Rd, LCP and LSP are 13.41 μmol·m-2·s-1, 0.029 mol·mol-1, 0.61 μmol·m-2·s-1, 20.63 μmol·m-2·s-1 and 481.85 μmol·m-2·s-1, respectively. The results show that the net photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (Gs), the maximum net photosynthetic rate, apparent quantum efficiency and dark respiration rate increased, but the water use efficiency decreased with the rain addition treatments. Therefore, the rain addition changed the physiological characteristics and improved photosynthetic capacity level of N. tangutorum in varying degrees. The results also show that stomatal conductance is the main factor limiting the photosynthetic rate at the stage of light saturation.

Reference (37)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return