• 中国中文核心期刊
  • 中国科学引文数据库(CSCD)核心库来源期刊
  • 中国科技论文统计源期刊(CJCR)
  • 第二届国家期刊奖提名奖

Citation:

Effects of Ozone Stress on Tree Root: A Review

  • Received Date: 2015-05-07
  • Elevated ozone will cause substantial changes of root architecture that may ultimately affect the function of root and thereby the tree's overall health and ability to cope with stress. The effects of elevated ozone on the root of trees included root growth, fine root dynamics and turnover, root respiration, carbohydrates in roots, mycorrhiza growth and rhizosphere soil microbiology. The effects of ozone stress on tree root are relevant to the concentration of ozone, species, tree age, community composition and planting conditions. At present, there is limited information about the mechanism of the effects of ozone on root. It is necessary in the future to strengthen the in-situ observation and quantitative analysis of root architecture, response of endogenous hormone to ozone, stress signal sensing, transduction and interaction with other signaling pathway, and the molecular biological mechanisms of roots response to ozone.
  • 加载中
  • [1]

    Ashmore M R. Assessing the future global impacts of ozone on vegetation[J]. Plant, Cell and Environment, 2005, 28:949-964.
    [2]

    IPCC.CLIMATECHANGE 2001-The Scientific Basis[M]. Cambridge, UK and New York, USA:Cambridge University Press, 2002.
    [3] 冯宗炜,王春乙,金明红,等.大气臭氧与环境变化对农业生态系统的影响机理与评估[M]//周秀骥等主编,长江三角洲低层大气与生态系统相互作用研究.北京:气象出版社,2004:253-292.

    [4] 胡正华,孙银银,李琪,等.南京北郊春季地面臭氧与氮氧化物浓度特征[J].环境工程学报,2012,6(6):1995-2000.

    [5] 徐胜,何兴元,陈玮,等.高浓度O3对树木生理生态的影响[J].生态学报,2009,29(1):368-377.

    [6] 刘常富,刘辰,何兴元,等.基于OTC模拟的臭氧浓度升高对华山松生长的影响[J].应用生态学报,2013,24(10):2731-2736.

    [7] 苏丽丽,付伟,徐盛,等.高浓度O3对银杏凋落叶化学组成的影响[J].生态学杂志,2015,34(10):2757-2763.

    [8] 付伟,邓莉兰,徐胜,等.臭氧对黄檗幼苗叶片可见伤害及气孔特征的影响[J].东北林业大学学报,2015,43(2):14-18.

    [9] 牛俊峰,张巍巍,李丽,等.臭氧浓度升高对香樟叶片光合色素及抗过氧化的影响及其氮素响应[J].生态学报,2012,32(16):5062-5070.

    [10]

    Zhang W W, Niu J F, Wang X K, et al. Effects of ozone exposure on growth and photosynthesis of the seedlings of Liriodendron chinense (Hemsl.) Sarg, a native tree species of subtropical China[J]. Photosynthetica, 2011, 49(1):29-36.
    [11] 张巍巍,牛俊锋,冯兆忠,等.全缘冬青幼苗(Ilex integra Thunb.)对大气O3浓度升高的响应[J].环境科学,2011,32(8):2414-2421.

    [12] 杨田田,张巍巍,胡恩柱,等.O3浓度升高对南方城市绿化树种氮素的影响[J].环境科学,2014,35(10):3896-3902.

    [13]

    Feng Z, Sun J, Wan W, Hu E, Calatayud V. Evidence of widespread ozone-induce visible injury on plants in Beijing, China[J]. Environmental Pollution, 2014, 193:296-301.
    [14]

    Kolb T E, Matyssek R. Limitations and perspectives about scaling ozone impacts in trees[J]. Environmental Pollution, 2001, 115:373-393.
    [15]

    Grulke N E, Johnson R, Monschein S, et al. Variation in morphological and biochemical O3 injury attributes of mature Jeffrey pine within canopies and between microsites[J]. Tree Physiology, 2003, 23:923-929.
    [16]

    Nunn A J, Reiter I M, Häberle K H, et al. Response patterns in adult forest trees to chronic ozone stress:identification of variations and consistencies[J]. Environmental Pollution, 2005, 136:365-369.
    [17]

    Matyssek R, Bahnweg G, Ceulemans R, et al. Synopsis of the CASIROZ case study:carbon sink strength of Fagus sylvatica L. in a changing environment-experimental risk assessment of mitigation by chronic ozone impact[J]. Plant Biology, 2007, 9:163-180.
    [18]

    Karnosky D F, Zak D R, Pregitzer K S, et al. Tropospheric O3 moderates responses of temperate hardwood forests to elevated CO2:a synthesis of molecular to ecosystem results from the Aspen FACE project[J]. Functional Ecology, 2003, 17:289-304.
    [19]

    Andersen C P. Source-sink balance and carbon allocation below ground in plants exposed to ozone[J]. New Phytologist, 2003, 157:213-228.
    [20]

    Warwick K R, Taylor G. Contrasting effects of tropospheric ozone on five native herbs which coexist in calcareous grassland[J]. Global Change Biology, 1995, 1:143-151.
    [21]

    Rennenberg H, Herschbach C, Polle A. Consequences of air pollution on shoot-root interactions[J]. Journal of Plant Physiology, 1996, 148:296-301.
    [22]

    Grantz D A, Silva V, Toyota M, et al. Ozone increases root respiration but decreases leaf CO2 assimilation in cotton and melon[J]. Journal of Experimental Botany, 2003, 54:2375-2384.
    [23]

    Sanz J, Muntifering R B, Bermejo V, et al. Ozone and increased nitrogen supply effects on the yield and nutritive quality of Trifolium subterraneum[J]. Atmospheric Environment, 2005, 39:5899-5907.
    [24]

    Hill J O, Simpson R J, Wood J T, et al. The phosphorus and nitrogen requirements of temperate pasture species and their influence on grassland botanical composition[J]. Australian Journal of Agricultural and Resource economics, 2005, 56:1027-1039.
    [25]

    Hill J O, Simpson R J, Moore A D, et al. Morphology and response of roots of pasture species to phosphorus and nitrogen nutrition[J]. Plant and Soil, 2006, 286:7-19.
    [26]

    Guidi L, Degl'Innocenti E, Martinelli F, et al. Ozone effects on carbon metabolism in sensitive and insensitive Phaseolus cultivars[J]. Environmental and Experimental Botany, 2009, 66:117-125.
    [27] 列淦文,叶龙华,薛立.臭氧胁迫对植物主要生理功能的影响[J].生态学报,2014,34(2):294-306.

    [28] 牛俊峰,张巍巍,李丽,等.臭氧浓度升高对香樟叶片光合色素及抗过氧化的影响及其氮素响应[J].生态学报,2012,32(16):5062-5070.

    [29] 任巍,田汉勤.臭氧污染与陆地生态系统生产力[J].植物生态学报,2007,31(2):219-230.

    [30]

    Andersen C P, Wilson R, Plocher M, et al. Carry-over effects of ozone on root growth and carbohydrate concentrations of ponderosa pine seedlings[J]. Tree Physiology, 1997, 17:805-811.
    [31]

    Grantz D A, Gunn S, Vu H B. O3 impacts on plant development:a meta-analysis of root/shoot allocation and growth[J]. Plant Cell and Environment, 2006, 29:1193-1209.
    [32]

    Zouzoulas D, Koutroubas S D, Vassiliou G, et al. Effects of ozone fumigation on cotton (Gossypium hirsutum L.) morphology, anatomy, physiology, yield and qualitative characteristics of fibers[J]. Environmental and Experimental Botany, 2009, 67:293-303.
    [33]

    Laurence J A, Andersen C P. Ozone and natural systems:understanding exposure, response and risk[J]. Environment International, 2003, 29:155-160.
    [34]

    Díaz-de-Quijano M, Schaub M, Bassin S, et al. Ozone visible symptoms and reduced root biomass in the subalpine species Pinus uncinata after two years of free-air ozone fumigation[J]. Environmental Pollution, 2012, 169:250-157.
    [35]

    Karlsson P E, Uddling J, Skärby L, et al. Impact of ozone on the growth of birch (Betula pendula) saplings[J]. Environmental Pollution, 2003, 124:485-495.
    [36]

    Andersen C P, Hogsett W E, Wessling R, et al. Ozone decreases spring root growth and root carbohydrate content in ponderosa pine the year following exposure[J]. Canadian Journal of Forest Research, 1991, 21:1288-1291.
    [37]

    Calatayud V, García-Breijo F J, Júlia C, et al. Physiologica, anatomical and biomass partitioning responses to ozone in the Mediterranean endemic plant Lamottea dianae[J]. Ecotoxicology and Environmental Safety, 2011, 74:1131-1138.
    [38]

    Zeleznik P, Hrenko M, Then C, et al. CASIROZ:root parameters and types of ectomycorrhiza of young beech plants exposed to different ozone and light regimes[J]. Plant Biology, 2007, 9:298-308
    [39]

    Grulke N E, Andersen C P, Fenn M E, et al. Ozone exposure and nitrogen deposition lowers root biomass of ponderosa pine in the San Bernardino Mountains, California[J]. Environmental Pollution, 1998, 103:63-73.
    [40]

    Gerosa G, Fusaro L, Monga R, et al. A flux-based assessment of above and below ground biomass of Holm oak (Quercus ilex L.) seedlings after one season of exposure to high ozone concentrations[J]. Atmospheric Environment, 2015, 113:41-49.
    [41]

    Alonso R, Elvira S, González-Fernández I, et al. Drought stress does not protect Quercus ilex L. from ozone effects:results from a comparative study of two subspecies differing in ozone sensitivity[J]. Plant Biology, 2014, 16:375-384.
    [42]

    Nikolova P S, Andersen C P, Blaschke H, et al. Belowground effects of enhanced tropospheric ozone and drought in a beech/spruce forest (Fagus sylvatica L./Picea abies[L.] Karst)[J]. Environmental Pollution, 2010, 158:1071-1078.
    [43]

    Lambers H, Chapin III F S, Pons T L.[M] Plant Physiological Ecology. Springer, New York, 1998, 540.
    [44]

    Moraes R M, Bulbovas P, Furlan C M, et al. Physiological responses of saplings of Caesalpinia echinata Lam., a Brazilian tree species, under ozone fumigation[J]. Ecotoxicology and Environmental Safety, 2006, 63:306-312.
    [45]

    Pregitzer K S, Burton A J, King J S, et al. Soil respiration, root biomass, and root turnover following long-term exposure of northern forests to elevated atmospheric CO2 and tropospheric O3[J]. New Phytologist, 2008, 180:153-161.
    [46]

    King J S, Pregitzer K S, Zak D R, et al. Fine root biomass and fluxes of soil carbon in young stands of paper birch and trembling aspen as affected by elevated atmospheric CO2 and tropospheric O3[J]. Oecologia, 2001, 128:237-250.
    [47]

    Weigt R B, Häberle K H, R tzer T, et al. Whole-tree seasonal nitrogen uptake and partitioning in adult Fagus sylvatica L. and Picea abies L.[Karst.] trees exposed to elevated ground-level ozone[J]. Environmental Pollution, 2015, 196:511-517.
    [48]

    Luedemann G, Matyssek R, Winkler J B, et al. Contrasting ozone×pathogen interaction as mediated through competition between juvenile European beech (Fagus sylvatica) and Norway spruce (Picea abies)[J]. Plant and Soil, 2009, 323:47-60.
    [49]

    Landolt W, Bühlmann U, Bleuler P, et al. Ozone exposure-response relationships for biomass and root/shoot ratio of beech (Fagus sylvatic), ash (Fraxinus excelsior), Norway spruce (Picea abies) and Scots pine (Pinus sylvestris)[J]. Environmental Pollution, 2000, 109:473-478.
    [50]

    Thomas V F D, Braun S, Flückiger W. Effects of simultaneous ozone exposure and nitrogen loads on carbohydrate concentrations, biomass and growth of young spruce trees (Picea abies)[J]. Environmental Pollution, 2005, 137:507-516.
    [51]

    Nadelhoffer K J. The potential effects of nitrogen deposition on fine root production in forest ecosystems[J]. New Phytologist, 2000, 147:131-139.
    [52]

    Gill R A, Jackson R B. Global patterns of root turnover for terrestrial ecosystems[J]. New Phytologist, 2000, 147:13-31.
    [53]

    Burton A J, Pregitzer K S, Hendrick R L. Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwoodforests[J]. Oecologia, 2000, 12(5):389-399.
    [54]

    Norby R J, Jackson R B. Root dynamics and global change:seeking an ecosystem perspective[J]. New Phytologist, 2000, 147:3-12.
    [55]

    Kelting D L, Burger J A, Edwards G S. The effects of ozone on the root dynamics of seedlings and mature red oak (Quercus rubra L.)[J]. Forest Ecology and Management, 1995, 79:197-206.
    [56]

    Mainiero R, Kazda M, Häberle K, et al. Fine root dynamics of mature European beech (Fagus sylvatica L.) as influenced by elevated ozone concentrations[J]. Environmental Pollution, 2009, 157:2658-2644.
    [57]

    Edwards N T. Root and soil respiration responses to ozone in Pinus taeda L. seedlings[J]. New Phytologist, 1991, 118:315-321.
    [58]

    Shan Y, Feng Z, Izuta T, et al. The individual and combined effects of ozone and simulated acid rain on growth, gas exchange rate and water-use efficiency of Pinus armandi Franch[J]. Environmental Pollution, 1996, 91:355-361.
    [59] Gorisson A, van Veen J. Temporary disturbance of translocation of assimilates in Douglas firs caused by low levels of ozone and sulfur dioxide[捊漀琀猀?瀀椀渀攀?昀椀渀攀?爀漀漀琀猀?愀渀搀?洀礀挀漀爀爀栀椀稀愀?愀昀琀攀爀?昀甀渀最椀挀椀搀攀?愀瀀瀀氀椀挀愀琀椀漀渀?愀渀搀?氀漀眀?氀攀瘀攀氀?漀稀漀渀攀?攀砀瀀漀猀甀爀攀?椀渀?愀???礀攀愀爀?昀椀攀氀搀?攀砀瀀攀爀椀洀攀渀琀嬀?崀??吀爀攀攀猀????????????????????戀爀?嬀??崀??愀戀攀爀攀爀?????攀爀戀椀渀最攀爀?????氀攀砀漀甀?????椀?攀琀?愀氀???椀???昀昀攀挀琀猀?漀昀?搀爀漀甀最栀琀?愀渀搀?挀愀渀漀瀀礀?漀稀漀渀攀?攀砀瀀漀猀甀爀攀?漀渀?愀渀琀椀漀砀椀搀愀渀琀猀?椀渀?昀椀渀攀?爀漀漀琀猀?漀昀?洀愀琀甀爀攀??甀爀漀瀀攀愀渀?戀攀攀挀栀??椀???愀最甀猀?猀礀氀瘀愀琀椀挀愀???椀?嬀?崀??吀爀攀攀?倀栀礀猀椀漀氀漀最礀???  ???????????????戀爀?嬀??崀?刀攀椀挀栀?倀????匀挀栀漀攀琀琀氀攀???圀??匀琀爀漀漀???????椀?攀琀?愀氀???椀???昀昀攀挀琀猀?漀昀?伀?猀甀戀????猀甀戀???匀伀?猀甀戀????猀甀戀???愀渀搀?愀挀椀搀椀挀?爀愀椀渀?漀渀?洀礀挀漀爀爀栀椀稀愀氀?椀渀昀攀挀琀椀漀渀?椀渀?渀漀爀琀栀攀爀渀?爀攀搀?漀愀欀?猀攀攀搀氀椀渀最猀嬀?崀???愀渀愀搀椀愀渀??漀甀爀渀愀氀?漀昀??漀琀愀渀礀???????????? ???? ????戀爀?嬀??崀?匀琀爀漀漀??????刀攀椀挀栀?倀????匀挀栀漀攀琀琀氀攀???圀???椀?攀琀?愀氀???椀???昀昀攀挀琀猀?漀昀?漀稀漀渀攀?愀渀搀?愀挀椀搀?爀愀椀渀?漀渀?眀栀椀琀攀?瀀椀渀攀??椀??倀椀渀甀猀?猀琀爀漀戀甀猀???椀??猀攀攀搀氀椀渀最猀?最爀漀眀渀?椀渀?昀椀瘀攀?猀漀椀氀猀???????礀挀漀爀爀栀椀稀愀氀?椀渀昀攀挀琀椀漀渀嬀?崀???愀渀愀搀椀愀渀??漀甀爀渀愀氀?漀昀??漀琀愀渀礀?????????????? ???????戀爀?嬀??崀??爀攀戀攀渀挀?吀???爀愀椀最栀攀爀?????栀愀渀最攀猀?椀渀?琀栀攀?挀漀洀洀甀渀椀琀礀?漀昀?攀挀琀漀洀礀挀漀爀爀栀椀稀愀氀?昀甀渀最椀?愀渀搀?椀渀挀爀攀愀猀攀搀?昀椀渀攀?爀漀漀琀?渀甀洀戀攀爀?甀渀搀攀爀?愀搀甀氀琀?戀攀攀挀栀?琀爀攀攀猀?挀栀爀漀渀椀挀愀氀氀礀?昀甀洀椀最愀琀攀搀?眀椀琀栀?搀漀甀戀氀攀?愀洀戀椀攀渀琀?漀稀漀渀攀?挀漀渀挀攀渀琀爀愀琀椀漀渀嬀?崀??倀氀愀渀琀??椀漀氀漀最礀???  ??????????????戀爀?嬀??崀??爀攀戀攀渀挀?吀???爀愀椀最栀攀爀????吀礀瀀攀猀?漀昀?攀挀琀漀洀礀挀漀爀爀栀椀稀愀?漀昀?洀愀琀甀爀攀?戀攀攀挀栀?愀渀搀?猀瀀爀甀挀攀?愀琀?漀稀漀渀攀?昀甀洀椀最愀琀攀搀?愀渀搀?挀漀渀琀爀漀氀?昀漀爀攀猀琀?瀀氀漀琀猀嬀?崀???渀瘀椀爀漀渀洀攀渀琀愀氀??漀渀椀琀漀爀椀渀最?愀渀搀??猀猀攀猀猀洀攀渀琀???  ??????????????戀爀?嬀??崀??愀戀攀爀攀爀?????爀攀戀攀渀挀?吀???氀攀砀漀甀?????椀?攀琀?愀氀???椀???昀昀攀挀琀猀?漀昀?氀漀渀最?琀攀爀洀?昀爀攀攀?愀椀爀?漀稀漀渀攀?昀甀洀椀最愀琀椀漀渀?漀渀???猀甀瀀?????猀甀瀀?一?愀渀搀?琀漀琀愀氀?一?椀渀??椀??愀最甀猀?猀礀氀瘀愀琀椀挀愀??椀??愀渀搀??猀猀漀挀椀愀琀攀搀?洀礀挀漀爀爀栀椀稀愀氀?昀甀渀最椀嬀?崀??倀氀愀渀琀??椀漀氀漀最礀???  ??????????????戀爀?嬀??崀??渀搀爀攀眀?????椀氀氀攀猀欀漀瘀??????倀爀漀搀甀挀琀椀瘀椀琀礀?愀渀搀?挀漀洀洀甀渀椀琀礀?猀琀爀甀挀琀甀爀攀?漀昀?攀挀琀漀洀礀挀漀爀爀栀椀稀愀氀?昀甀渀最愀氀?猀瀀漀爀漀挀愀爀瀀猀?甀渀搀攀爀?椀渀挀爀攀愀猀攀搀?愀琀洀漀猀瀀栀攀爀椀挀??伀?猀甀戀????猀甀戀??愀渀搀?伀?猀甀戀????猀甀戀?嬀?崀???挀漀氀漀最礀??攀琀琀攀爀猀???  ???????????????戀爀?嬀??崀?刀漀琀栀???刀???愀栀氀攀礀?吀????吀栀攀?攀昀昀攀挀琀?漀昀?愀挀椀搀?瀀爀攀挀椀瀀椀琀愀琀椀漀渀?愀渀搀?漀稀漀渀攀?漀渀?琀栀攀?攀挀琀漀洀礀挀漀爀爀栀椀稀愀攀?漀昀?爀攀搀?猀瀀爀甀挀攀?猀愀瀀氀椀渀最猀嬀?崀??圀愀琀攀爀???椀爀??愀渀搀?匀漀椀氀?倀漀氀氀甀琀椀漀渀????????? ???????????戀爀?嬀??崀?倀??????爀攀稀?匀漀戀愀?????甀攀挀欀?吀????倀甀瀀瀀椀?倀???椀?攀琀?愀氀???椀???渀琀攀爀愀挀琀椀漀渀猀?漀昀?攀氀攀瘀愀琀攀搀??伀?猀甀戀????猀甀戀???一??猀甀戀????猀甀戀??愀渀搀?伀?猀甀戀????猀甀戀??漀渀?洀礀挀漀爀爀栀椀稀愀氀?椀渀昀攀挀琀椀漀渀??最愀猀?攀砀挀栀愀渀最攀?愀渀搀?一?洀攀琀愀戀漀氀椀猀洀?椀渀?猀愀瀀氀椀渀最猀?漀昀?匀挀漀琀猀?瀀椀渀攀嬀?崀??倀氀愀渀琀?愀渀搀?匀漀椀氀????????????? ???????戀爀?嬀? 崀?匀挀栀氀漀琀攀爀????圀椀渀欀氀攀爀???????渀攀樀愀?????椀?攀琀?愀氀???椀??匀栀漀爀琀?琀攀爀洀?攀昀昀攀挀琀猀?漀昀?漀稀漀渀攀?漀渀?琀栀攀?瀀氀愀渀琀?爀栀椀稀漀猀瀀栀攀爀攀?戀甀氀欀?猀漀椀氀?猀礀猀琀攀洀?漀昀?礀漀甀渀最?戀攀攀挀栀?琀爀攀攀猀嬀?崀??倀氀愀渀琀??椀漀氀漀最礀???  ??????????????戀爀?嬀??崀?倀栀椀氀氀椀瀀猀?刀????娀愀欀???刀???漀氀洀攀猀?圀?????椀挀爀漀戀椀愀氀?挀漀洀洀甀渀椀琀礀?挀漀洀瀀漀猀椀琀椀漀渀?愀渀搀?昀甀渀挀琀椀漀渀?戀攀渀攀愀琀栀?琀攀洀瀀攀爀愀琀攀?琀爀攀攀猀?攀砀瀀漀猀攀搀?琀漀?攀氀攀瘀愀琀攀搀?愀琀洀漀猀瀀栀攀爀椀挀??伀?猀甀戀????猀甀戀??愀渀搀?琀爀漀瀀漀猀瀀栀攀爀椀挀?伀?猀甀戀????猀甀戀?嬀?崀??伀攀挀漀氀漀最椀愀???  ???????????????and nitrogen gradient in Switzerland[J]. Phyton (Austria), 2002, 42:223-228.

    [60]

    Grulke N E, Andersen C P, Hogsett W E. Seasonal changes in above- and belowground carbohydrate concentrations of ponderosa pine along a pollution gradient[J]. Tree Physiology, 2001, 21:173-181.
    [61]

    Read D. Biodiversity:plants on the web[J]. Nature, 1998, 396(6706):22-23.
    [62]

    Kainulainen P, Utriainen J, Holopainen J K, et al. Influence of elevated ozone and limited nitrogen availability on conifer seedlings in an open-air fumigation system:effects on growth, nutrient content, mycorrhiza, needle ultrastructure, starch and secondary compounds[J]. Global Change Biology, 2000, 6:345-355.
    [63]

    Mahoney M J, Chevone B I, Skelly J M, et al. Influence of mycorrhizae on the growth of loblolly pine seedlings exposed to ozone and sulphur dioxide[J]. Phytopathology, 1985, 75:679-682.
    [64]

    Keane K D, Manning W J. Effects of ozone and simulated acid rain on birch seedling growth and formation of ectomycorrhizae[J]. Environmental Pollution, 1988, 52:55-65.
    [65]

    Díaz G, Barrantes O, Honrubia M, et al. Effect of ozone and sulphur dioxide on mycorrhizae of Pinus halepensis Miller[J]. Annales des Sciences Forestieá res, 1996, 53:849-856.
    [66]

    Rantanen L, Palomaki V, Holopainen T. Interactions between exposure to O3 and nutrient status of trees-effects on nutrient content and uptake, grwoth, mycorrhiza and needle ultra-structure[J]. New Phytologist, 1994, 128:679-687.
    [67]

    Manninen A M, Laatikainen T, Holopainen T. Condition of S
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article views(3125) PDF downloads(1091) Cited by()

Proportional views

Effects of Ozone Stress on Tree Root: A Review

  • 1. Research Institute of Forest Ecology, Environment and Protection, CAF, Key Laboratory of Forest Ecology and Environment of State Forestry Administration, Beijing 100091, China

Abstract: Elevated ozone will cause substantial changes of root architecture that may ultimately affect the function of root and thereby the tree's overall health and ability to cope with stress. The effects of elevated ozone on the root of trees included root growth, fine root dynamics and turnover, root respiration, carbohydrates in roots, mycorrhiza growth and rhizosphere soil microbiology. The effects of ozone stress on tree root are relevant to the concentration of ozone, species, tree age, community composition and planting conditions. At present, there is limited information about the mechanism of the effects of ozone on root. It is necessary in the future to strengthen the in-situ observation and quantitative analysis of root architecture, response of endogenous hormone to ozone, stress signal sensing, transduction and interaction with other signaling pathway, and the molecular biological mechanisms of roots response to ozone.

Reference (67)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return