• 中国中文核心期刊
  • 中国科学引文数据库(CSCD)核心库来源期刊
  • 中国科技论文统计源期刊(CJCR)
  • 第二届国家期刊奖提名奖

Citation:

Seasonal Change and Numerical Simulation of the Frozen Soil under Two Types of Vegetation in Qilian Mountains

  • Received Date: 2016-03-01
  • [Objective] To explore the seasonal change of frozen soil and the impact of vegetation in Qilian Mountains on seasonal frozen soil, and build the relationship between the frozen soil depth and temperature. [Methods] The comparative observation of freezing and thawing process in the Pailugou Watershed, Qilian Mountains was done at a shady Picea forest soil and a sunny grassland soil.[Results] (1) The seasonal frozen soil in Qilian Mountains begins to freeze in late October every year, the interface of frozen layer begins to melt in April, and ends in August. The freezing thawing process can be divided into three stages, namely: the unidirectional freezing stage, one-way melting stage and two-way melting stage. (2) The start time in the freezing stage of Picea forest soil is basically the same as the grassland, but the freezing rate is faster than that of the grassland, and the maximum frozen depth is larger than that of grassland; the start time in the melting stage of frozen soil layer of the Picea forest and grassland are basically the same, the melting rate is similar, but the melting of Picea forest soil lasts longer. (3) Accumulated temperature determines the soil freezing melting process, when frozen hours accumulated temperature reached -460℃·h, the soil started to freeze; when positive hours accumulated temperature reached 62℃·h, the interface of frozen soil layer begins to melt. [Conclution] Soil freezing depth has close relationship with hours accumulated temperature. It can be used for predicting permafrost frozen state.
  • 加载中
  • [1] 王宁练,张世彪,贺建桥,等.祁连山中段黑河上游山区地表径流水资源主要形成区域的同位素示踪研究[J]. 科学通报, 2009,54(15):2148-2152.

    [2] 王金叶,康尔泗,金博文.黑河上游林区冻土的水文功能[J].西北林学院学报, 2001, 16(增刊):30-34. DOI:10.3969/j.issn.1001-7461.2001.z1.008.

    [3] 周幼吾,郭东信.我国多年冻土的主要特征[J].冰川冻土,1982,4(1):1 -17.

    [4] 杨针娘. 祁连山冰川水资源[J]. 冰川冻土, 1988,10 (1):36-46

    [5] 黄 斌,郭江勇,强玉柱,等. 祁连山北麓春季冻土深度对气温变化的响应[J]. 干旱区研究, 2009, 26(5):639-643.

    [6] 彭小清, 张廷军, 潘小多,等. 祁连山区黑河流域季节冻土时空变化研究[J]. 地球科学进展, 2013, 28(4):573-574.

    [7] 牛 赟,刘贤德,敬文茂,等. 祁连山排露沟流域气温、冻土冻融与河川径流特征[J]. 林业科学,2014,50(1):27-31.

    [8] 金 铭,李 毅,刘贤德,等. 祁连山黑河中上游季节冻土年际变化特征分析[J]. 冰川冻土, 2011, 33(5):1068-1073.

    [9] 陈仁升,康尔泗,吉喜斌,等. 黑河源区高山草甸的冻土及水文过程初步研究[J]. 冰川冻土, 2007, 29(3):387-396. DOI:10.3969/j.issn.1000-0240.2007.03.008.

    [10] 刘 文,刘 坤,张春辉,等. 种子萌发的积温效应-以青藏高原东缘的12种菊科植物为例[J]. 植物生态学报, 2011, 35(7):751-758.

    [11] 党宏忠, 周泽福, 赵雨森,等.祁连山水源涵养林土壤水文特征研究[J]. 林业科学研究, 2006,19(1):39-44.

    [12] 董晓红, 于澎涛, 王彦辉,等.分布式生态水文模型TOPOG在温带山地小流域的应用-以祁连山排露沟小流域为例[J]. 林业科学研究, 2007, 20(4):477-484.

    [13] 王顺利,刘贤德,金 铭,等. 祁连山区气候变化与流域径流特征研究[J]. 干旱区资源与环境, 2011, 25(1):162-165.

    [14] 王顺利, 刘贤德, 金 铭,等. 祁连山排露沟小流域土壤物理性质空间差异研究[J]. 水土保持通报, 2010, 30(4):81-86.

    [15] 王金叶, 王彦辉, 王顺利,等. 祁连山林草复合流域降水规律的研究[J]. 林业科学研究, 2006, 19(4):416-422.

    [16] 中国气象局. 地面气象观测规范[M]. 北京:气象出版社, 2003.

    [17]

    Shur Y, Hinkel K M, Nelson F E. The transient layer: implications for geocryology and climate-change science[J]. Permafrost & Periglacial Processes, 2005, 16(1):5-17.
    [18] 姜逢清, 胡汝骥, 李 珍. 青藏铁路沿线1966-2004年冻结与融化指数的变化趋势[J]. 地理学报, 2007, 62(9):935-945.

    [19]

    Li L, Simonovic S P. System dynamic model for predicting floods from snowmelt in North American prairie watersheds[J]. Hydrological Processes, 2002, 16(13):2645-2666.
    [20]

    Clothier B. Soil physics with BASIC-transport models for soil-plant systems G.S. Campbell. Developments in soil science, 14. Elsevier, Amsterdam, 1985. 150 pp., Dfl 120.00/US$41.50, diskette: Dfl.90/US$31.00. ISBN 0-444-42557-8[J]. Agricultural Water Management, 1987, 12(3):252-254.
    [21] 程国栋. 局地因素对多年冻土分布的影响及其对青藏铁路设计的启示[J]. 中国科学地球科学, 2003, 33(6):602-607.

    [22] 陈京华, 贾文雄, 赵 珍,等. 1982-2006年祁连山植被覆盖的时空变化特征研究[J]. 地球科学进展, 2015, 30(7):834-845.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article views(2779) PDF downloads(804) Cited by()

Proportional views

Seasonal Change and Numerical Simulation of the Frozen Soil under Two Types of Vegetation in Qilian Mountains

  • 1. School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
  • 2. Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Key Laboratory of Forestry Ecology and Environment of State Forestry Administration, Beijing 100091, China
  • 3. Gansu Province Qilian Water Resource Conservation Forest Research Institute, Zhangye 734000, Gansu, China

Abstract: [Objective] To explore the seasonal change of frozen soil and the impact of vegetation in Qilian Mountains on seasonal frozen soil, and build the relationship between the frozen soil depth and temperature. [Methods] The comparative observation of freezing and thawing process in the Pailugou Watershed, Qilian Mountains was done at a shady Picea forest soil and a sunny grassland soil.[Results] (1) The seasonal frozen soil in Qilian Mountains begins to freeze in late October every year, the interface of frozen layer begins to melt in April, and ends in August. The freezing thawing process can be divided into three stages, namely: the unidirectional freezing stage, one-way melting stage and two-way melting stage. (2) The start time in the freezing stage of Picea forest soil is basically the same as the grassland, but the freezing rate is faster than that of the grassland, and the maximum frozen depth is larger than that of grassland; the start time in the melting stage of frozen soil layer of the Picea forest and grassland are basically the same, the melting rate is similar, but the melting of Picea forest soil lasts longer. (3) Accumulated temperature determines the soil freezing melting process, when frozen hours accumulated temperature reached -460℃·h, the soil started to freeze; when positive hours accumulated temperature reached 62℃·h, the interface of frozen soil layer begins to melt. [Conclution] Soil freezing depth has close relationship with hours accumulated temperature. It can be used for predicting permafrost frozen state.

Reference (22)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return