• 中国中文核心期刊
  • 中国科学引文数据库(CSCD)核心库来源期刊
  • 中国科技论文统计源期刊(CJCR)
  • 第二届国家期刊奖提名奖

Citation:

Characteristics of δD and δ18O in Summer Precipitation in the West Ordos Desert and Its Water Vapor Sources

  • Received Date: 2015-09-29
  • [Objective] The ecological environment and climate in the West Ordos Desert of Inner Mongolia is fragile and sensitive. Study on the hydrogen(δD)and oxygen(δ18O)stable isotopic compositions and sources of precipitation in the West Ordos Desert is theoretically important to reveal the process of hydrological cycle in the West Ordos Desert and develop strategies for reducing or preventing land desertification and the use of regional water resource. [Methods] By using stable isotope technique, the compositions and relationships of δD and δ18O in precipitation and the effect of climatic factors on them in West Ordos Desert in summer were analyzed. Furthermore, the water vapor sources were determined based on HYSPLIT model. [Results] The relationship of δD and δ18O in precipitation in summer was δD = 7.287δ18O + 1.170. An apparent inverse correlation between stable isotopes and precipitation existed in the West Ordos Desert in summer (PP>0.05). The d-excess was positive and less than the global average d-excess (10‰), indicating that the precipitation in the West Ordos Desert was affected by ocean monsoon. The results of air mass back trajectories of summer precipitation using the HYSPLIT model indicated a dominant effect of local evaporation and continental northwesterly monsoon air masses in June and August, an effect of southeasterly monsoon on heavy rainfall (>30 mm), and the co-influence of oceanic monsoons southeasterly and southwesterly air masses in July. [Conclusion] The precipitation in the West Ordos Desert experiences evaporation effect. Analysis of precipitation and temperature effects indicates that the "amount effect" exists significantly, whereas the "temperature effect" is not obvious during summer. The water vapor from continental northwesterly, oceanic monsoons southeasterly and southwesterly, and local evaporation collectively have influence on precipitation in summer in the West Ordos Desert.
  • 加载中
  • [1] 刘君, 郭华良, 刘福亮, 等. 包头地区大气降水δD和δ18O变化特征浅析[J]. 干旱区资源与环境, 2013, 27 (5): 157-162.

    [2] 章新平, 刘晶淼, 田立德, 等. 亚洲降水中δ18O沿不同水汽输送路径的变化[J]. 地理学报, 2004, 59 (5): 699-708.

    [3]

    Dansgaard W. Stable isotopes in precipitation [J]. Tellus, 1964, 16 (4): 436-468.
    [4]

    Friedman I. Deuterium content of natural waters and other substances [J]. Geochimica et Cosmochimica Acta, 1953, 4 (1-2): 89-103.
    [5]

    Craig H. Isotopic variation in meteoric waters [J]. Science, 1961, 133 (3465): 1702-1703.
    [6]

    Dansgaard W. The abundance of δ18O in atmospheric water and water vapour [J]. Tellus, 1953, 5 (4): 461-469.
    [7]

    He Y Q, Pang H X, Theakstone W H, et al. Isotopic variations in precipitation at Bangkok and their climatological significance [J]. Hydrological Processes, 2006, 20: 2873-2884.
    [8]

    Jeanton H C, Gonfiantini R, Travi Y, et al. Oxygen-18 variations of rainwater during precipitation: application of the Rayleigh model to selected rainfalls in southern France [J]. Journal of Hydrology, 2004, 289 (1-4): 165-177.
    [9] 姚檀栋, 孙维贞, 蒲健辰, 等. 内陆河流域系统降水中的稳定同位素—乌鲁木齐河流域降水中δ18O 与温度关系研究[J]. 冰川冻土, 2000, 22 (1): 15-22.

    [10] 柳鉴容, 宋献方, 袁国富, 等. 西北地区大气降水δ18O的特征及水汽来源[J]. 地理学报, 2008, 63 (1): 12-22.

    [11]

    Araguás-Araguás L, Froehlich K, Rozanski K. Stable isotope composition of precipitation over southeast Asia [J]. Journal of Geophysical Research Atmospheres, 1998, 103 (D22): 28721-28742.
    [12]

    Welker J M. ENSO effects on δ18O, δD and d-excess values in precipitation across the U.S. using a high-density, long-term network (USNIP) [J]. Rapid Communications in Mass Spectrometry, 2012, 26: 1893-1898.
    [13]

    Good S P, Kennedy C D, Stalker J C, et al. Patterns of local and nonlocal water resource use across the western U.S. determined via stable isotope intercomparisons [J]. Water Resources Research, 2014, 50 (10): 8034-8049.
    [14]

    Zanden, H B V, Wunder M B, Hobson K A, et al. Contrasting assignment of migratory organisms to geographic origins using long-term versus year-specific precipitation isotope maps [J]. Methods in Ecology and Evolution, 2014, 5 (9): 891-900.
    [15]

    Bowen G J and Good S P. Incorporating water isoscapes in hydrological and water resource investigations [J]. Wiley Interdisciplinary Reviews Water, 2015, 2 (2): 107-119.
    [16] 章申, 于维新, 张青莲, 等. 我国西藏南部珠穆朗玛峰地区冰雪水中氘和重氧的分布[J]. 中国科学A辑, 1973 (4): 430-433.

    [17] 章新平, 姚檀栋. 我国降水中δ18O 的分布特点[J]. 地理学报, 1998, 53 (7): 356-364.

    [18] 宋献方, 柳鉴容, 孙晓敏, 等. 基于 CERN 的中国大气降水同位素观测网络[J]. 地球科学进展, 2007, 22 (7): 738-747.

    [19] 王涛. 中国东部季风区域降水稳定同位素的时空分布特征及其气候意义. 南京: 南京信息工程大学, 2012.

    [20] 吴华武, 章新平, 孙广禄, 等. 长江流域大气降水中δ18O 变化与水汽来源[J]. 气象与环境学报, 2011, 27 (5): 7-12.

    [21]

    Ma J Z, Zhang P, Zhu G F, et al. The composition and distribution of chemicals and isotopes in precipitation in the Shiyang River system, northwestern China [J]. Journal of Hydrology, 2012, 436-437: 92-101.
    [22] 章新平, 刘晶淼, 孙维贞, 等. 中国西南地区降水中氧稳定同位素比率与相关气象要素之间关系的研究[J]. 中国科学(D辑), 2006, 35 (9): 850-859.

    [23] 徐庆, 刘世荣, 安树青, 等. 卧龙地区大气降水氢氧同位素特征的研究[J]. 林业科学研究, 2006, 19 (6): 679-686.

    [24] 徐振, 刘玉虹, 王中生, 等. 卧龙降水稳定同位素与季风活动的关系[J]. 环境科学, 2008, 29 (4): 1007-1013.

    [25]

    Luo W J, Wang S J, Xie X N. A comparative study on the stable isotopes from precipitation to speleothem in four caves of Guizhou, China. Chemie der Erde-Geochemistry, 2013, 73: 205-215.
    [26] 章新平, 姚檀栋. 影响青藏高原的天气系统与降水中氧同位素的关系[J]. 冰川冻土, 1995, 17 (2): 125-131.

    [27] 田立德, 姚檀栋, 孙维贞, 等. 青藏高原中部水蒸发过程中的氧稳定同位素变化[J]. 冰川冻土, 2000, 22 (2): 159-164.

    [28] 田立德, 姚檀栋, Numaguti A. 青藏高原南部季风降水中稳定同位素波动与水汽输送过程[J]. 中国科学(D辑), 2001, 31 (增刊): 215-220.

    [29]

    Yu W S, Wei F L, Ma Y M, et al. Stable isotope variations in precipitation over Deqin on the southeastern margin of the Tibetan Plateau during different seasons related to various meteorological factors and moisture sources [J]. Atmospheric Research, 2016, 170: 123-130.
    [30] 李晖, 周宏飞. 乌鲁木齐地区大气降水中δD和δ18O的变化特征[J]. 干旱区资源与环境, 2007, 21 (9): 46-50.

    [31]

    Zhang X P, Guan H D, Zhang X Z, et al. Simulation of stable water isotopic composition in the atmosphere using an isotopic Atmospheric Water Balance Model [J]. International Journal of Climatology, 2015, 35: 846-859.
    [32]

    Wu H W, Zhang X P, Li X Y, et al. Seasonal variations of deuterium and oxygen-18 isotopes and their response to moisture source for precipitation events in the subtropical monsoon region [J]. Hydrological Processes, 2015, 29: 90-102.
    [33] 赵家成, 魏宝华, 肖尚斌. 湖北宜昌地区大气降水中的稳定同位素特征[J]. 热带地理, 2009, 29 (6): 526-531.

    [34]

    Wu X, Zhu X Y, Pan M C, et al. Seasonal variability of oxygen and hydrogen stable isotopes in precipitation and cave drip water at Guilin, southwest China [J]. Environmental Earth Sciences, 2014, 72 (8): 3183-3191.
    [35] 陈中笑, 程军, 郭品文, 等. 中国降水稳定同位素的分布特点及其影响因素[J]. 大气科学学报, 2010, 33 (6): 667-679.

    [36]

    Liu Z F, Tian L D, Chai X R, et al. A model-based determination of spatial variation of precipitation δ18O over China [J]. Chemical Geology, 2008, 249 (1-2): 203-212.
    [37] 李小飞, 张明军, 李亚举, 等. 西北干旱区降水中δ18O变化特征及其水汽输送[J]. 环境科学, 2012, 33 (3): 711-719.

    [38] 郑淑蕙, 侯发高, 倪葆龄. 我国大气降水的氢氧稳定同位素研究[J]. 科学通报, 1983, 28 (13): 801-806.

    [39] 金可, 饶文波, 孙江, 等. 鄂尔多斯沙区大气降水同位素特征及其来源[J]. 人民黄河, 2015, 37 (3): 31-35.

    [40]

    Yin L H, Hou G C, Su X S, et al. Isotopes (δD and δ18O) in precipitation, groundwater and surface water in the Ordos Plateau, China: implications with respect to groundwater recharge and circulation [J]. Hydrogeology Journal, 2011, 19 (2): 429-443.
    [41] 杨郧城, 侯光才, 文东光, 等. 鄂尔多斯盆地大气降雨氢氧同位素的组成与季节效应[J]. 地球学报, 2005, 26 (Sup.): 289-292.

    [42]

    Draxler R R, Hess G D. An overview of the HYSPLIT 4 modelling system for trajectories, dispersion and deposition [J]. Australian Meteorological Magazine, 1998, 47 (4): 295-308.
    [43]

    Stein A F, Draxler R R, Rolph G D, et al. NOAA's HYSPLIT atmospheric transport and dispersion modeling system [J]. Bulletin of the American Meteorological Society, 2016, 96 (12): 2059-2077.
    [44]

    Wu J K, Ding Y, Ye B, et al. Spatio-temporal variation of stable isotopes in precipitation in the Heihe River Basin, Northwestern China [J]. Environmental Earth Sciences, 2010, 61 (6): 1123-1134.
    [45] 李小飞, 张明军, 王圣杰, 等. 黄河流域大气降水氢、氧稳定同位素时空特征及其环境意义[J]. 地质学报, 2013, 87 (2): 269-277.

    [46]

    Liu J R, Song X F, Yuan G F, et al. Characteristics of δ18O in precipitation over eastern monsoon China and the water vapor sources [J]. Chinese Science Bulletin, 2010, 55 (2): 200-211.
    [47] 陈粉丽, 张明军, 马潜, 等. 兰州及其周边区域大气降水δ18O特征及其水汽来源[J]. 环境科学, 2013, 34 (10): 3755-3763.

    [48] 刘宏伟, 徐明, 管清浩. 银川地区大气降水中氢氧稳定同位素的变化特征及影响因素分析[J]. 水科学与工程技术, 2012 (1): 88-90.

    [49]

    Merlivat L, Jouzel J. Global climatic interpretation of the deuterium-oxygen-18 relationship for precipitation [J]. Journal of Geophysical Research Oceans, 1979, 84 (C8): 5029-5033.
    [50] 张应华, 仵彦卿, 温小虎, 等. 环境同位素在水循环研究中的应用[J]. 水科学进展, 2006, 17 (5): 738-747.

    [51]

    Jouzel J, Merilvat L. Deuterium and oxygen 18 in precipitation: modeling of the isotopic effects during snow formation [J]. Journal of Geophysical Research Atmospheres, 1984, 89 (D7): 11749-11757.
    [52]

    Froehlich K, Gibson J J, Aggarwal P K. Deuterium excess in precipitation and its climatological significance. In: Study of Environmental Change using Isotope Techniques. IAEA, VIENNA, 2002: 54-66.
    [53] 马潜, 张明军, 王圣杰, 等. 中国西部局地蒸发水汽贡献率探讨[J]. 地理科学进展, 2012, 31 (11): 1452-1459.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article views(2900) PDF downloads(832) Cited by()

Proportional views

Characteristics of δD and δ18O in Summer Precipitation in the West Ordos Desert and Its Water Vapor Sources

  • 1. Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China
  • 2. Experimental Center of Desert Forestry, Chinese Academy of Forestry, Dengkou 015200, Inner Mongolia, China

Abstract: [Objective] The ecological environment and climate in the West Ordos Desert of Inner Mongolia is fragile and sensitive. Study on the hydrogen(δD)and oxygen(δ18O)stable isotopic compositions and sources of precipitation in the West Ordos Desert is theoretically important to reveal the process of hydrological cycle in the West Ordos Desert and develop strategies for reducing or preventing land desertification and the use of regional water resource. [Methods] By using stable isotope technique, the compositions and relationships of δD and δ18O in precipitation and the effect of climatic factors on them in West Ordos Desert in summer were analyzed. Furthermore, the water vapor sources were determined based on HYSPLIT model. [Results] The relationship of δD and δ18O in precipitation in summer was δD = 7.287δ18O + 1.170. An apparent inverse correlation between stable isotopes and precipitation existed in the West Ordos Desert in summer (PP>0.05). The d-excess was positive and less than the global average d-excess (10‰), indicating that the precipitation in the West Ordos Desert was affected by ocean monsoon. The results of air mass back trajectories of summer precipitation using the HYSPLIT model indicated a dominant effect of local evaporation and continental northwesterly monsoon air masses in June and August, an effect of southeasterly monsoon on heavy rainfall (>30 mm), and the co-influence of oceanic monsoons southeasterly and southwesterly air masses in July. [Conclusion] The precipitation in the West Ordos Desert experiences evaporation effect. Analysis of precipitation and temperature effects indicates that the "amount effect" exists significantly, whereas the "temperature effect" is not obvious during summer. The water vapor from continental northwesterly, oceanic monsoons southeasterly and southwesterly, and local evaporation collectively have influence on precipitation in summer in the West Ordos Desert.

Reference (53)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return