杉木球果和种子发育节律的研究初报*

迟 健 邵蓓蓓

(中国林业科学研究院亚热带林业研究所)

关键词 杉木, 球果一种子发育, 含水率, 相对密度

杉木为我国南方主要造林树种,研究也较充分,但对球果和种子发育的研究比较薄弱。 蒋恕(1980年)[1]和华中农学院植物教研组(1975年)[2]等从解剖学角度研究过杉木 的 受 精 过 程。中国科学院林业土壤研究所(1973年)[3]和唐午庆等(1964年)[4]从物候学角度报告过杉木 球果的大小和重量变化。我们则想从种子生产角度观察球果,特别是种子的发育过程,了解 不同季节的种子品质变化,以便为最适采种期找到一些客观指标,并为种子园适时管理提供 一些依据。

一、材料和方法

1984—1985年在浙江淳安县姥山林场杉木种子园中进行定位观察。该地属中 亚 热 带 北 部,年平均气温17.2 ℃,海拔200 m。种子园位于低山山腰阳坡。观察株为 5 株生长正常的 嫁接株,定期从每株树1—2 m高处的东西南北方各采 1 果,共20枚果。先测球果鲜 重 和 体 积(容量瓶排水法),再将球果、全部果鳞和一半种子在60 ℃温度下烘至恒重;另一 半 鲜种子立即进行发芽试验,以免影响发芽率。测定干粒重用百粒法,即每次试样分为 8 组,每组 100粒,由 8 组的平均值推算干粒重(以含水率12%的气干重量为准)。发芽率由4组(每组100粒)平均,发芽温度25 ℃,当连续 5 d发芽率小于 1 %时停止观察。种子生活力测定方法 是:每次取发芽种子10粒,种在石英砂中,在25 ℃、8 h/d 光周期下用蒸馏水培养10 d,分别测 幼苗中轴长、鲜重(带种壳)及干重,取平均值。

1985年又在姥山种子园的施肥试验区和对照区分别定期观测了球果、种子的发育过程及养分动态变化。试验包括7个小区,各区一分为二,一半施肥,另一半对照,总面积约30亩,包括施肥株350株,对照366株。一年施肥两次,时间为4月中、6月中(或9月2日),每株每次施复合肥(N23%、P23%)0.625 kg,尿素0.375 kg。每小区随机采样3株,在每株树2 m左右高处的4个方向各采1个果,每次分别施肥处理和对照各采84个球果,分别测定球果、果鳞和种子的干、鲜重量及 N、P、K 含量。

二、试验结果

1. 球果和种子重量的季节变化 球果干鲜重量从 6 月上旬至10月下旬不断 增 加,但11

来稿于1987年11月7日收到。

本所李貫同志参加本项研究工作。

月干重不再增加,鲜重反而因水分丧失而略有下降。果鳞的变化大致相似。种子重量的变化大致可分为3个阶段: 6月上旬至8月下旬是种胚和胚乳从无到有的时期,所以重量的增加十分显著,每个球果的种子平均干、鲜重量分别从0.06g和0.15g增加到0.44g和0.92g,增重6.3和5.1倍; 9月初一10月下旬为均匀增重阶段,干、鲜重量约增加50%; 11月份种子重量不再增加(表1)。

表 1

杉木平均单果和种子重量的季节变化

(单位: g)

日期	球果鲜重		球果干重		果鳞鲜重		果鳞干重		种子鲜重		种子干重	
月、日)	平均	%	平均	%	平均	%	平均	%	平均	%	平均	%
6.7	8.76	53.0	2.17	38.4	8.61	56.8	2.11	44.0	0.15	10.6	0.06	7.1
7.10	11.86	71.7	2.95	52. 2	11.25	74.3	2.70	56.3	0.61	43,3	0.25	29.4
8.30	12.77	77.3	4.29	75.9	11.85	78.2	3.85	80.2	0.92	65.2	0.44	51.8
9.10	13.92	84.2	4.82	85.3	12.71	83.9	4.27	89.0	1.22	86.5	0.58	68.2
9.20	14.68	88.8	4.77	84.4	13.19	87.1	4.35	84.5	1,23	87.2	0.62	72.9
9.25	15.34	92.8	4,93	87.3	13.76	90.8	4.26	88.8	1.24	87.9	0.67	78.8
10.5	15.73	95.2	4.95	87.6	14.26	94.1	4.31	89.8	1.32	93.6	0.71	83.5
10.13	15.65	94.7	5.10	90.3	14.28	94.3	4.27	89.0	1.37	97.2	0.82	96.5
10.20	16.53	100.0	5.49	97.2	15.15	100.0	4.66	97.1	1.38	97.9	0.83	97.6
10.27	15.50	93.8	5.18	91.7	14.14	93.3	4.42	92.1	1.37	97.2	0.76	89.4
11.3	15.50	93.8	5.52	97.7	14.09	93.0	4.68	97.5	1.41	100.0	0.84	99.4
11.10	15.55	94.1	5.65	100.0	14.15	93.4	4.80	100.0	1.40	99.3	0.85	100.0
11.17	14.05	85.0	5.22	92.4	12.67	83.6	4.38	91.3	1.38	97.9	0.84	99.4
11.25	11.82	71.5	4.96	87.8	10.47	69.1	4.13	86.0	1.35	95.7	0.84	99.4

注, 农内结果为二年平均数。

2. 球果含水率和相对密度的季节变化 球果和种子含水率在6月以后不断下降,球果含水率从6月上旬的75%左右降到11月下旬的58%左右;果鳞从75.5%左右降到60%左右;种子含水率从60%左右降到约38%。而球果的相对密度也是如此,从8月30日的1.04g/cm³降到11月下旬的0.8g/cm³左右。这是因为9一10月球果体积基本上不增加,而含水率却一直下降,从而使相对密度下降(表2)。

表 2

球果含水率与相对密度的年变化

日 期	含	水率	(%)	球 果	球果	日期	含	水率	(%)	球 果	球 櫐
(月、日)	球果	果頻	种子	相对密度 (g/cm³)	体 积 (cm³)	(月,日)	球果	果鱒	种子	相对密度 (g/cm³)	体 积 (cm³)
6.7	75.22	75.49	59.73	_	9.5	10.13	67.41	70.05	39.78	0.94	16.6
7.10	75.13	76.00	59.08	_	12.8	10,20	66.78	59.26	39.49	0.93	16.7
8.30	66.41	67.51	52.17	1.04	16.0	10.27	66.58	68,69	44.69	0.98	15.7
9.10	65.37	66.39	52.26	1.02	15.3	11.3	64.38	66.77	40.43	0.94	14.3
9.20	67.51	67.02	49.59	0.99	15.7	11.10	63.67	66.08	39.29	0.91	14.7
9.25	68.52	69.04	45.75	0.99	16.1	11.17	62.83	65.42	39.13	0.93	13.2
10.5	67.78	69.75	46.01	0.98	16.0	11.25	58.02	60.58	38.15	18.0	12.6

3. 种子品质的季节变化 出籽率在11月中旬达最高值; 干粒重在10月下旬达最高值; 发芽率在9月中旬只有10%,下旬达30%,而10月下旬至11月初达最高值。从杉木的种子品

质考虑,10月下旬至11月初为本地区杉木的最适采种期(表3)。

表 3

种子品质的季节变化

日期	出籽率(%)		E(%) 千粒重(g) 发3		发芽	种子生活力①			日期	出籽率(%)		千粒重(g)		发芽	种子生活力①		
(月、日)	鲜籽	气干②	鲜籽	气干	率 (%)	胚轴长 (mm)	鲜重 (g/株)	干重 (g/株)	(月、日)	鲜籽	气干②	鲜籽	气干	率 (%)	胚轴长 (mm)	鲜重 (g/株)	于重 (g/株)
6.7	1.70	0.78	1.22	0.73					10.13	8.76	5.99	13.70	8.59	49.3	20.7	0.056	0.010
7.10	5.15	2.40	9.01	4.88					10.20	8.35	5.74	13.36	8.68	60.8	27.7	0.061	0.014
8.30	7.23	3.92	11.17	5.34					10.27	8.81	5.54	13.10	8.76	59.3	26.3	0.059	0.013
9.10	8.73	4.73	13.30	7.04	10	15.3	0.039	0.006	11.3	9.10	6.16	13.22	8.72	61.5	26.5	0.060	0.016
9.20	8.38	4.80	12.00	7.28	25.5	17.2	0.047	0.008	11.10	9.00	6.21	12.10	8.08	56.0	25.5	0.061	0.012
9.25	8.06	4.96	12.45	7.55	30.5	21.9	0.058	0.011	11.17	9.83	6.80	11.60	7.90	-	-	_	
10.5	8.36	5.13	13.60	8.22	41.3	20.2	0.048	0.010	11.25	8.71	6.05	11.30	7.82	61.0	19.2	0.057	0.013

① 种子生活力用发芽种子在沙中培养10天后测定。②气干指含水率12%的种子。

4. 不同季节球果、种子养分含量的变化 果鳞养分含量从7月初至11月初逐渐下降,而种子的 N、P含量却逐渐增加,其中9月中旬至11月初约增加1/4(表4)。

表 4

不同季节杉木球果和种子的养分含量

部 位	采样日期	含全N(%)				含P2O5(%)				含 K ₂ O (%)			
	(月、日)	施	肥	对	照	施	肥	对	照	施	肥	对	煕
果	7.9	1.041	(100)	1.051	(100)	0.106	(100)	0.105	(100)	2.105	(100)	2.44	(100)
-	9.19	0.725	(69.7)	0.730	(69.4)	0.048	(45.3)	0.042	(40)	2.41	(114.5)	2.36	(96.7)
鳞	11.2	0.713	(68.5)	0.689	(65.6)	0.041	(38.7)	0.033	(31.4)	2.62	(124.5)	2.92	(119.7)
种	7.9	1.454	(100)	1.427	(100)	0.210	(100)	0.196	(100)	2.65	(100)	2.88	(100)
	9.19	2.2740	(156.4)	2.104	(147.0)	0.236	(112.4)	0.2100	(107.1)	1.80	(67.9)	2.07	(71.9)
子	11.2	2.787	(192.3)	2.670	(187.1)	0.312	(148.6)	0.2400	(122.4)	1.39	(52.5)	1.57	(54.5)

注:每一数据为2份样品平均值,施肥种类为N·P肥。

5. 施肥对杉木球果、种子发育的影响 施肥杉木的球果和种子重量重于对照杉木的 球果和种子,7月上旬施肥区每个球果平均比对照重15%左右,9月中旬重20%,11月初重25%左右,单果种子在7月初平均比对照重25%左右,9月中旬至11月初重26—30%,干粒重在7月初比对照重9%,9月中旬重13%;出籽率从7月上旬至11月初平均比对照高0.2%左右(表5)。以上试验与大面积试验的结果大体一致,施肥区球果总产3616 kg,平均单株

表 5

施肥对球果、种子发育的影响

采 样 日 期 (月、日)	女	理	球 果 (g)		果蜂	(g)	种子	(g)	千粒重	出籽率
(月、日)	, Ar		鲜 重	干 重	鲜 重	于 重	鲜 重	干 重	(g)	(%)
7.9	施对	肥照	13.69 11.86	3.14 2.95	12.46 10.91	3.10 2.70	1.23	0.31 0.25	5.079 4.656	2.54
9.19	施对	肥照	14.68 12.25	4.77 3.78	13.19 10.98	4.05	1.49	0.72 0.55	6.257 5.533	5.50 5.06
11.2	施对	肥照	14.23 11.43	4.54 3.77	12.78 10.26	3.73 3.13	1.45	0.80	7.530 7.162	6.33 6.24

注。千粒重和出籽率均以含水率12%的气干种子为准。

10.33 kg, 种子总产172 kg, 平均0.49 kg/株, 对照区球果总产2809.5 kg, 平均7.68kg/ 株,种子产量129 kg,平均0.35 kg/株。施肥区球果增产34.6%,种子增产40%。

三、讨 论

(一) 以往对杉木球果的物候调查,主要是观察球果大小(果径)的变化过程,而对 种 子 的发育过程则很少进行观察。生产上应用的是杉木种子,而不是果鳞,因此对种子发育的物候

观察更为重要。据我们观察,杉木果鳞和种子的 发育是不同步的,据此可以把杉木球果的发育 划分成几个阶段, ①球果(主要是果鳞)生长阶 段。其中果径生长在6月前,球果体积和重量 增长阶段在8月底前。②种子生长阶段。其中 6-8月为种子重量和体积迅速增长期,9-10 月重量增长较少但品质和养分含量迅速提高, 本地区10月下旬种子品质达最佳状态。这从图 1 可以看得很清楚。

(二) 以往看杉木球果是否成熟, 主要 凭 外观判断, 以球果由青转黄、种子色泽由浅变

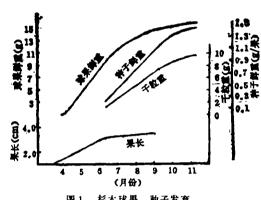


图 1 杉木球果、种子发育

深为标准。但据我们在种子园的多年观察,在球果成熟期的 10 月下 旬 虽有少数 球 果 微 苗 色,但大部分还是青的,11月初也只有少数球果呈明显黄色,大部分球果在11月下旬才呈黄 褐色,但此时种子已开始飞散。因此我们认为单纯以球果颜色来判断成熟度不是切实可行的。 众所周知,籽实含水率下降,干物质增加是禾谷类植物种子成熟时的普遍规律,有经验的农 民只要咬一下稻、麦等的籽粒,就可知道其是否成熟。杉木球果和种子也有同样规律。从表 2 可看出杉木球果在成熟期含水率65%左右(与唐午庆1964年报告[4]相符), 种子含水率40% 左右,与此同时,球果相对密度小于 0.95 g/cm3。所以我们建议以球果含水率和相对密度 (两者密切相关)作为判断成熟度的补充指标。

(三) 据武汉地区1975—1979年观察[6], 及杭州地区1984年观察[6], 杉木种胚和胚 乳 在 6月中下旬形成,在此之前球果中没有真正的种子。另外从表 3 看出 9 月下旬杉木种子已接 近成熟,干粒重达成熟种子的90%左右,发芽率达30%左右,可以说种子发育大体上已成定 局,所以从种子经营角度考虑,种子园抚育管理和施肥的重要时间应为6-8月,这时适当 施肥可促成种子正常发育、籽粒饱满,达到最佳增产效果。同时,杉木花芽分化在 6 月下旬 至 8 月,此时施肥还有利于花芽形成,为第二年种子丰收打下基础。

我们的调查观测只在一个种子园中进行了2年,因此关于杉木种子何时成熟的结论在其 它气候区不一定适用,即使在同一地点,由于历年气候的变化也可能造成成熟期的推迟和提 早。但本研究的目标主要不在于确定成熟期的具体日期,而主要在于为生产上提供切实可行 的、能确定成熟期的指标,这方面今后还要作更深入的研究。

参考 文献

- [1] 蒋恕, 1980, 杉木开花结籽的解剖学观察, 南林学报, (1): 109--115。
- [2] 华中农学院植物教研室,1975,杉木植物学基础(单行本)。
- [3] 中国科学院林业土壤研究所,1973,杉木人工林结实规律,林业科技资料第2辑。
- [4] 唐午庆等, 1964, 引自《杉木》P.156, 林业出版社(1984, 吴中伦主编)。
- [5] 万云先、王灶安, 引自《杉木》P.86-88。
- [6] 余象煜等, 1984, 杉木的胚胎发育及淀粉动态,杭州大学学报,(1)。
- [7] 迟健, 1987, 杉木种子园施肥研究, 亚热带林业科技, (1)。

PRELIMINARY STUDY ON THE DEVELOPMENT RHYTHM OF CONES AND SEEDS OF CHINESE FIR

Chi Jian Sao Peipei

(The Research Institute of Subtropical Forestry CAF)

Abstract

Through fixed-trees observation, it was found that the development of cones and seeds are not synchronous. The cone diameter has come to the maxvalue in June; the increment of volume and weight of cones mainly happen before early September; the peak period of increment of seeds is from June to August, and Sept. to middle-October are even increment stage of seed weight, there is no increment afterwords; the quality of seeds including the weight of one-thousand seeds, germination percentage and vigour of seeds are worst before early Sept., medium in mid-Sept. to mid-Oct. and best in late October; the nutrient contents of cone are decrease from July to early November but the nutrient of seed are contrary, to which the increment is one-fourth from middle-Sept. to early Nov.. For determing the cone collection period accurately, two supplementary standards were recommended, that are: the moisture content of cones lower than 66% and that of seeds lower than 40%, the relative density lower than 0.95 g/cm³.

Key words: Cunninghamia lanceolata; cone-seed development; moisture content; relative density