0-1时间序列分析及其在害虫预测中的应用

梁其伟 李天生

(中国林业科学研究院林业研究所)

关键词 二值时间序列分析, 害虫预测, 马尾松毛虫

害虫种群由非暴发状态发展为暴发,不仅是量的变化,而且也是质变。这是一种两类状态的问题。在我国,因各种原因,至今很少地方用数值表示森林害虫种群动态的 时间 序列 x_1, x_2, \dots, x_N 。很多地方只有暴发和非暴发的记载。这可看成由两种状态 构成 的 0-1 时间序列,0-1时间序列分析方法为这种历史信息提供了简便的分析与预测的手段。

1 0-1时间序列简介及其预测的理论依据[1,2]

事物如果呈现两种状态,或按某一水平值可以划分为两种状态,我们不妨将一种状态以 1 表示,另一种状态以 0 表示。倘若这两种状态可随时间而变,则由此得相应的一串由 0 和 1 组成的0-1序列。是二值时间序列的一种。

某二值时间序列 W_1,W_2,\cdots,W_N 中长为 l+1 的子序列为: $\{W_1,\cdots,W_l,W_{l+1}\}$; $\{W_2,\cdots,W_{l+1},W_{l+2}\}$; \cdots ; $\{W_{N-1},\cdots,W_{N-1},W_N\}$, 共有 N-l个。

这些子序列的每一个的前 l 个数与 $\{W_{N-l+1}, \dots, W_N\}$ 相比较,累计与 $\{W_{N-l+1}, \dots, W_N\}$ 相同的子序列的个数,记为 N_l 。

这 N_1 个子序列,它们的前 l 个数与 $\{W_{N-1+1}, \dots, W_N\}$ 相同,将它们最后一个数为 1 的子序列个数记为 N_1 ,最后一个数为 0 的子序列的个数记为 N_2 。

根据概率论的原理, 当 N 充分大时, 以下两个条件概率可由其频率来近似:

$$P(W_{N+1}=1 | W_{N-1}=W_{N-1}, \dots, W_N=W_N) \approx \frac{N_1}{N_1}$$

$$P(W_{N+1}=0 | W_{N-1}=W_{N-1}, \dots, W_N=W_N) \approx \frac{N_0}{N_1}$$

据此,可对0-1时间序列作一步预报:

若
$$\frac{N_1}{N_1} > \frac{N_0}{N_1}$$
 $\hat{W}_{N+1} = 1$, $\frac{N_1}{N_1} < \frac{N_0}{N_1}$ $\hat{W}_{N+1} = 0$, $\frac{N_1}{N_1} = \frac{N_0}{N_1}$ 不可预报。

2 在马尾松毛虫种群预测中的应用

2.1 浙江省泗安林场马尾松毛虫发生状态的0-1时间序列预报

根据马尾松毛虫发生的特点,不是马氏过程,所以l不取1,且与两代前发生关系不显著,故l取2。由表1得45个(47-2=45)长度为3的子序列,分别为。

010; 100; 000; 001; 010; 100; 000; 001; 010; 100; 000; 000; 001; 011; 110; 100; 001; 010; 100; 000; 000; 001; 010; 100; 000; 000; 001; 011; 110; 100; 000; 000; 001; 011; 110; 101; 010; 100; 000; 000; 000; 000; 000; 011; 011; 010; 0

年	份	19	966	19	67	19	68	19	69	19	70	19	71	19	72	19	73	19	74	19	75	19	76	19	77
	期态	0	=	0	=	<u> </u>	=	_ 0	<u>=</u> 0		_	 0	_					<u> </u>		1	_	<u>-</u>	_	 0	= 1
年	₩	1	978	19	79	19	80	19	81	19	82	19	83	19	84	19	85	19	86	19	87	19	88	19	189
	期态	_ 0	= 0	- 0	=	 1	= 0		= 0		= 0		=			→	=	 0	= 0	 0.	=	 0	=	 1	=

衰 1 浙江省泗安林场南片林区历年松毛虫状态

现在要预报1989年第二虫期的状态。由于1988年第二虫期的状态为 1 ,1989年第一虫期的状态为 1 ,故1989年第二虫期的前两个状态为" 1 1"。从上述45个子序列中可以看出,前两位等于" 1 1"的子序列个数 N_1 = 3,这三个子序列中第三个数为 1 的子序列 N_1 = 0,第三个数为 0 的子序列 N_0 = 3。

因 $N_0 > N_1$, 故预报1989年第二虫期的状态 $\hat{W}_{N+1} = 0$ 即属于非暴发状态。 1989年第二虫期的实际状况是非暴发,与预报相符。

2.2 湖南省郴州地区马尾松毛虫发生状态0-1时间序列预报

湖南省郴州地区1954年至1987年历年马尾松毛虫发生状态的0-1时间序列如表2。

年	份	1954~1955	1955~1956	1956~1957	1957~1958	1958~1959	1959~1960	1960~1961	1961~1962
状	态	1	0	0	1	0	0	0	0
年	₩	1962~1963	1963~1964	1964~1965	1965~1966	1966~1967	1967~1968	1968~1969	19 69~1970
秋	态	0	0	1	0	0	0	0	0
年	份	1970~1971	1971~1972	1972~1973	1973~1974	1974~1975	1975~1976	1976~1977	1977~1978
41	杏	0	0	1	0	0	0	1	0

妻 2 湖南省郴州地区历年马尾松毛虫发生状态

注:"虫期"栏中,"一"指第一代,"二"指第二代加越冬代。

住, 1954~1955指1954年第一代起至1955年越冬代, 其余类推。

取 1 = 2 ,则长度为 3 的子序列的个数为 34 - 2 = 32 个,分别为:

现在预报1987~1988年的马尾松毛虫发生状态。因为1985~1986年的状态为 0 ,1986~1987年的状态为 0 ,所以1987~1988年的前两个状态为" 0 0"。在上述32个子序列中可知,前两位数等于" 0 0"的子序列个数 N_1 = 18。在这 18 个子序列中,第三个数为 1 的子序列数 N_1 = 5 ,第三个数为 0 的子序列数 N_0 = 13。

由于 $N_0 > N_1$, 故预报1987~1988年马尾松毛虫的发生状态为 0,即非 暴发状态。预报 结果与实际情况相符。

3 讨 论

0-1时间序列为二值时间序列的一种。即使是数值表示的序列,也可以按某种水平值将 其划分为二值时间序列,这样大有好处。可以避免原始数据量估计不准造成的技术性误差, 提高分析结果的可靠性。

样本长度不够大的时候,条件概率不宜用频率来近似。但是,依据频率做判断总比没有依据要强。从数学角度来说,若样本长度为N,l值可按 $N-l \ge 2^{l+1}$ 来取,若实际样本N不太大,l可放宽为 $N-l-3 \ge 2^l$ 。然而,l到底取哪个值,还要结合害虫的发生特点,如本文的应用部分l取2。0-1时间序列分析的应用效果随着样本的长度增加而改善,样本长度越大,预测效果越佳。0-1时间序列预测是简便易行的方法。

参 考 文 献

- [1] Kedem Benjamin, 1980, Binary time series, New York Marcel Dekker, 104.
- [2] 项静恬等, 1986, 动态数据处理, 时间序列分析, 气象出版社。

The Method of 0-1 Time Series Analysis and Its Application in the Prediction of Population Trend for Dendrolimus punctatus

Liang Qiwei Li Tiansheng

(The Research Institute of Forestry CAF)

Abstract The 0-1 time series analysis is a kind of binary time series analysis. It is a simple and useful mathematical method. The method was applied in the prediction of population trend of *Dendrolimus punctatus* Walker.

Key words binary time series analysis; prediction; Dendrolimus punctatus