文章编号: 1001-1498(2002)05-0582-06

尾叶桉萌芽林留条数量对生长和产量的影响

杨曾奖¹,徐大平¹,江松远²,温记贤²

(1. 中国林业科学研究院热带林业研究所,广东广州 510520;2.广东省花都市林业局,广东广州 510000)

摘要:对 5.5年生尾叶桉实生林砍伐后,保留不同萌条数量对其萌芽林生长和产量的影响开展了研究。结果表明,定株使桩的存活率明显下降,特别是保留单株,但保留一定的株数却有利于萌芽林的生长;萌芽林的高、径和单株材积生长随保留株数的减少而显著增加;3.5年生单位面积蓄积量和出材率(顶木)以保留 3 株 桩 ¹为最好,其次为 4 株 桩 ¹和 2 株 桩 ¹,蓄积量分别为 45.49、44.21 和 42.51 m³ ·hm ²,分别是对照的 131.7%、128.0%和 123.0%,出材率(顶木)分别是对照的 174.3%、148.6%和 155.4%。因此,在中等地力,种植密度为 3 m × 2 m 的尾叶桉萌芽林,以纸浆材和顶木为主要经营目的的林分,建议其萌芽林的保留株数为 2 4 株 ·桩 ¹。

关键词: 尾叶桉; 萌芽更新; 留条数量; 生产力 中图分类号: S723.1⁺32.3 **文献标识码**:A

尾叶桉(Eucalyptus urophylla S. T. Blake.) 原产于印度尼西亚东部的帝汶岛及其邻近岛屿。 1964 年引入我国,80 年代在广东、广西、海南省等地大面积推广造林,并以其生长快速,适应性广,材质优良,木材纤维长,制浆率高等优点而深受生产单位和造纸部门的欢迎。目前尾叶桉林分约占桉树林分的 1/3,并正以每年约 3 万 hm^2 以上的速度更新和发展,成为近年华南地区推广种植面积最大的速生良种桉树[1-3]。

尾叶桉除具有速生丰产的特性外,具有极旺盛的萌芽力。同时,因其萌芽林早期密度自我调节能力较弱,因此,必须适时进行人工疏条定株,才能确保萌芽林的良好生长 $^{[4]}$ 。以往对桉树萌芽林的研究主要集中在窿缘桉($E.\ exsenta$ F. Muell.)、雷林 1 号桉($E.\ leizhou$ No. 1)、柠檬桉($E.\ citriodora$ Hook.)和杂交桉,并主要注重萌芽林的产量及其实生林的比较研究 $^{[5,6]}$ 。因尾叶桉引种推广种植较迟,对尾叶桉采伐后萌芽更新能力、萌条生长等的研究,国内外尚未见系统报道。本文研究了尾叶桉萌芽林不同留条数量对其林分生产力的影响,对指导尾叶桉萌芽林的经营、提高单位面积的产量和效益都有非常重要的意义。

1 试验地概况

试验地设在广东省花都市狮岭镇冯村马坳山低丘缓坡上,地处23 95 N,113 20 E。属南亚热带季节气候区,年均温21.87 ,年均降水量1676 mm。雨季主要集中在4 9月,11 2 月为旱季。林下植被主要有铁芒萁(Dicranopteris linearis (Burm.f.) Underw.)、桃金娘(Rhodomyrtus tomentosa (Ait.) Hassk)、铁冬青(Ilex rotunda Thunb.)等。土壤为中有机质层厚层

收稿日期: 2001-06-25

基金项目: 国家自然科学基金"杉木、桉树人工林长期生产力保持机制研究"(3963024)和广州市林业局科研项目"尾叶桉人工林更新及施肥的研究"的内容之一

作者简介:杨曾奖(1962-),男,广东大埔人,副研究员.

花岗岩赤红壤,试验地土壤剖面调查结果见表1。

表 1 试验地土壤剖面特性

土原		有机质	全N	全 P	全 K	水解N	速效 P	速效 K	pH值	容重/	土壤
度	/ cm		(g k	·g - 1)			(mg ·kg - 1)		(H_2O)	$(g cm^{-3})$	质地
0	12	18.79	0.906	0.164	2.613	66.578	1.338	19.99	3.79	1.259	中壤
12	36	12.14	0.749	0.175	2.291	34.856	0.410	16.205	3.98	1.341	重壤
36	95	8.46	0.576	0.191	2.134	42.847	0.460	11.442	4.25	1.403	重壤

注:土壤理化性质分析方法见参考文献[7],速效 P的测定采用双酸法,比色测定。

2 材料和方法

2.1 试验材料

供试的尾叶桉林分于 1990 年 4 月用实生苗种植,株行距为 3 m \times 2 m,1995 年 12 月 5.5 年 生时砍伐,伐时林木保存率 91.3 %,平均胸径 8.54 cm,平均高 11.15 m。选择相对平缓生长较为均匀的有代表性地段铺设本试验。

2.2 试验设计

保留不同萌条数量,试验包括 6 个处理:每桩保留 1、2、3、4、5 株,以不定株保留所有萌芽条为对照。每小区有效观测株数为 30 株,每小区间设保护行 2 行。试验 4 次重复,随机区组排列。

2.3 试验调查

试验对不同留条数的处理于砍伐后半年进行,试验开展前,对桩径和萌条高度进行调查, 而后3、6、12、27、36个月分别进行调查,主要调查内容包括胸径和高生长,并观测其生长势。

2.4 数据分析

将所有调查数据输入计算机 Excel 中,用计算机对所测数据进行分析处理。单株材积用 $V = 1/3 HD^2$ 计算 $^{[1]}$ 。用 L. S. D 测验法进行试验处理间的显著性检验。

3 结果与分析

3.1 留条数量对伐桩存活率的影响

尾叶桉伐桩具有极强的萌芽能力,除个别受人为或机械损伤而失去萌芽能力外,94.5%以上的伐桩可以萌出新条。对定株后萌芽林及伐桩保存率的调查(表2)表明,保留萌条数对桩存活率有一定的影响。表中看出留条数量减少,伐桩存活率有降低的趋势,特别是保留1株的处理,3年生时的伐桩保存率比保留多株处理减少了2.5%,定株的伐桩保

表 2 不同留条数对桩存活率的影响

留条数/	萌芽率/	伐桩存活率/	
(株 桩 ⁻¹)	% (0. 5 a)	%(1 a)	% (3 a)
1	95.9	83.0 a	82.3 a
2	96.1	84.9 a	84.1 a
3	94.5	85.7 a	84.4 a
4	95.8	86.3 a	85.5 a
5	95.4	85.8 a	85.3 a
Ck	94.8	90.5 b	89.6 b
<u>平均</u>	95.4	86.0	85.2

注: $F_{0.05} = 4.25$, $F_{0.01} = 2.77$

存率则比不定株减少了 5.2%。方差分析结果表明,不同处理间差异显著 ($F=3.28*>F_{0.05}=2.77$);进而进行 L. S. D 检验,结果除定株与不定株之间有显著差异外,保留不同株数处理间的差异未能达到显著水准,说明保留萌条数量的多少对伐桩存活率和保存率影响不大。调查中发现,定株使伐桩保存率降低的主要原因是人畜危害、风害及定株损伤植株引起病菌侵染等因

素造成,砍伐萌条越多,伤口也越多,感染病菌机会也多,风害越严重,同时砍伐时容易造成伐 桩劈裂等损伤,因而伐桩存活率降低[8]。

3.2 留条数量对萌芽林高生长的影响

试验林高生长的连续调查结果(表 3)表明.试验铺设时各处理之间差异不显著(F < 1)。 随着林龄的增长,不同处理间高生长逐渐出现差异,其发展趋势是,随保留株数的增加,高生长 逐渐下降,林龄越大差异愈明显,可见每桩的萌芽条保留株数越少,越有利于萌芽林的高生长。 伐后 3.5 a 生的萌芽林,处理间高生长的差异达到了极显著的水准($F = 25.76^{**} > F_{0.01} =$ 4.25),说明保留不同萌条数量对萌芽林高生长有着显著的影响。保留 1、2、3、4、5 株 桩 1和 不定株 (对照) 等,各处理的高分别为 10.31、9.96、9.44、8.84、8 和 <math>7.75 m,分别是对照的 133.0%、128.5%、121.8%、114.1%和103.2%。

		表 3	不同留条数对高	5生长的影响调查	结果	m
留条数 1996 年			1997-06 - 19	1998-09-02	199-06-03	
(株 ·桩 · ¹)	06-04	09-05	12-05	1777 00 17	1770 07 02	(3.5 a)
1	1.76	3.65	4.74 a	5.50 a	9.11 A	10.31 A
2	1.75	3.78	4.67 a	5.40 a	8.86 A	9.96 AB
3	1.66	3.63	4.49 ab	5.04 ab	7.62 B	9.44 BC
4	1.72	3.52	4.36 b	4.72 b	7.34 B	8.84 C
5	1.73	3.66	4.13 b	5.26 a	6.99 BC	8.00 D
CK	1.76	3.41	4.16 b	4.84 b	6.38 C	7.75 D
F	0.48	1.35	7.04 * *	3.09 *	23. 19 * *	25.76 * *
5%和1%L.S	. D		0.28 0.39	0.48 0.66	0.66 0.86	0.62 0.85

进一步用L.S.D 法进行多重比较,结果表明,保留 1 4 株 桩 1与不定株(对照)比较,高 生长有极显著的差异、保留 5 株、桩、与不定株比较差异不明显;伐桩保留萌条数相差 2 株以 上时,有极显著的差异。

3.3 留条数量对萌芽林胸径生长的 影响

试验结果(表 4)表明,保留伐桩 萌条数量对萌芽林高生长有一定影 响,更主要是影响其胸径的生长。从 胸径生长过程看,试验的当年,当处理 之间已出现明显差异,随着林龄的增 长差异更加显著。3.5年生时保留萌 条 1、2、3、4、5 株 ·桩 · 1 和不定株 (对 照),各处理胸径分别为7.88、6.71、5. 81、5.13、4.28 和 4.18 cm, 分别是对照 的 181. 3%、160. 5%、139. 0%、

表 4 不同留条数对胸径生长的影响调查结果

留条数/ (株 桩 ¹)	1996-09-05	1997-06-19	1998-09-02	1999-06-03 (3.5a)
1	2.44 A	4.20 A	6.50 A	7.88 A
2	2.17 AB	3.67 B	5.77 B	6.71 B
3	1.88 B	3.19 C	4.38 C	5.81 C
4	1.81 BC	2.95 C	3.94 D	5.13 D
5	1.77 BC	2.85 CD	3.35 E	4.28 E
CK	1.48 C	2.45 D	2.97 E	4.18 E
F值	8.77 * * *	42.83 * * *	68.72 * * *	75.25 * * *
5 %和 1 % L. S. D	0.30;0.42	0.34;0.47	0.50;0.70	0.50;0.70

122.7%、102.4%,说明胸径的大小与留条株数成反比关系、保留株数越少、胸径生长越大。

对不同林龄不同处理胸径生长进行方差分析,结果(表4)表明:(1)不同处理间方差均达 极显著水平:(2)比较不同林龄方差 F值表明.随林龄增长,胸径间差异逐渐增大,方差值也逐 渐增大 ,1 年生时 F 值 8.77 ,3.5 年生时达到 75.25 是前者的 8.6 倍 ,充分说明随林龄增大 ,不同处理间径生长差异也逐渐加大。

对 3.5 年生林分多重比较结果,保留 1 4 株 桩 ⁻¹与不定株比较,胸径生长有极显著的差异,保留 5 株 桩 ⁻¹与不定株比较差异不显著,保留不同株数间有显著或极显著的差异。从不同时间的多重比较结果看,保留 5 株 桩 ⁻¹和不定株之间的差异从有至无,说明可能尾叶桉萌芽林早期密度自我调节能力较弱,至后期则有所改善。

3.4 留条数量对萌芽林材积生长的影响

单株材积 V=1/3 HD²,由树高和胸径的大小来决定,而林分材积即蓄积量则由单株材积和单位面积的保留株数共同决定。不同处理萌芽林单株材积与林分蓄积的直观图 (图 1、2) 表明:

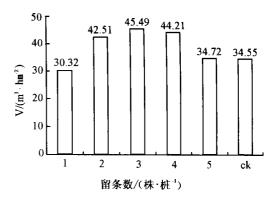


图 1 不同留条数单株材积

图 2 不同留条数林分蓄积量

- (1) 萌芽林单株材积(图 1),保留萌条数越少,材积越大。每桩保留 1 条的材积是保留 2 条材积的 1.43 倍、保留 2 条是保留 3 条材积的 1.4 倍、保留 3 条是保留 4 条的 1.37 倍、保留 4 条是保留 5 条材积的 1.59 倍,保留 5 条与 CK(不定株) 材积相近。说明每桩保留 5 株萌条已达最大值,保留更多对材积生长不利。
- (2) 林分材积不是保留萌条越多材积越大。图 2 看出 ,不同处理间材积最大是每桩保留 3 株萌条 ,达 $45.49~\text{m}^3~\text{hm}^{-2}$,以下依次排列是 4 株 桩 $^{-1}$ > 2 株 桩 $^{-1}$ > 5 株 桩 $^{-1}$ 不定株 > 1 株 桩 $^{-1}$,它们的材积分别为 44.21、42.51、34.72、34.55 和 $30.32~\text{m}^3~\text{hm}^{-2}$ 。每桩保留 5 株与不定 株比较两者蓄积相近 ,与单株材积测定结果相似 ,说明每桩保留 5 株萌芽条已是林分保留株数 最大值。再多者对材积和蓄积生长已无显著影响 ;每株保留 1 株 ,因林分株数过少 ,虽然单株 材积很大 ,而蓄积难以增加。因此 ,在原本林分比较稀疏和需生产大径材的情况下 ,一般不采 用每桩留单株的做法。

3.5 保留不同萌条数量对顶木(柱材)产量的影响

如上所述,留条数量显著地影响萌芽林高、径生长,同时影响萌芽条的分化,影响以经营顶木(柱材)为主要目的的林分的出材率。对花都市顶木生产林分的实测数据表明,生产尾径大于 $4.0~{\rm cm}$,长 $4~{\rm m}$ 和长 $5~{\rm m}$ 的顶木,其胸径应该大于 $5.5~{\rm cm}$ 。以此标准对 $3.5~{\rm f}$ 生不同留条处理的萌芽林调查数据进行统计分析,结果(表 5)显示,若要生产 $5~{\rm m}$ 以上的顶木,以保留 $3~{\rm k}$ · 桩 $^{-1}$ 为最高,达到 $129~{\rm k}$ ·100 桩 $^{-1}$;其次为 $2~{\rm k}$ · $115~{\rm k}$ ·100 桩 $^{-1}$;而后为 $4~{\rm k}$ ·

		- КС Щ	**************************************	- (1%/I/) H 1%/	.1-2				
のなって	顶木长/m -	留条数/(株・桩・1)							
胸径/ cm		1	2	3	4	5	CK		
> 5.5	4.0	90	130	163	142	92	97		
> 6.0	5.0	87	115	129	110	81	74		
占总萌条/%		87	58.8	43.8	28.5	16.5	14.6		

表 5 留条数量对出材率(顶木)的影响

注:表中出材率表示每100桩中的株数。

从表 5 还可以看出,伐桩保留萌条数量多少,对出材比例有影响,保留株数越少则出材比例越高,如 1 株 桩⁻¹,其出材率为 87 %,2 株 桩⁻¹,出材比例仅 58.8 %,随保留株数增加,出材比例递降,CK为最低,出材比例仅占 14.6 %。可见,伐桩保留萌条越多则小径材比例越大,出材率越低,反之则高,这与密度试验^[6]结果相一致。因此,要根据生产需要和经营周期合理选择伐桩保留萌条数量,不宜太多也不宜太少,一般每桩保留 2 3 株萌条比较好。

4 结论与建议

- (1) 尾叶桉萌芽更新能力强 ,采伐后能萌发 10 株 桩 1以上萌芽条 ,过多萌芽条不利于生长和干材形成 ,因此必须进行科学定株。试验表明以每桩保留 2 4 株最为理想 ,这样可以取得较大的高、径生长和最大的单位材积。生产上若以经营顶木为主要目的 ,对尾叶桉的萌芽更新可以掌握这样一个尺度 :一般情况保留 2 株 桩 1 ,好的留 3 株 桩 1 ,差的留 1 株 桩 1 ,特别好的可以保留 4 株 桩 1 。试验证明 ,萌芽条的生长与母树关系密切 ,桩径大的母树 ,萌条随之粗壮 ,并一直生长旺盛。特别在以经营顶木为主要目的的情况下 ,为让林分生长更加均匀一致 ,并有较高的出顶率 ,视桩径和萌芽条的生长情况进行定株 ,必可以达到良好的生产效果和明显的经济效益^[9]。若以经营纸浆切片材为主要目的 ,用材不受径级和长度制约 ,保留株数可多些 ,以保留 3 4 株 桩 1 为好 ,这样可以取得最大的单位面积蓄积量。
- (2) 试验表明,萌条生长与保留株数密切相关,萌条径、高和单株材积生长与保留株数成反比关系。保留萌条越多则径、高和单株材积生长越小,反之则大。林分蓄积在一定范围内则与保留株数成正比,本试验以保留3株,桩一为最大,而后下降。因此,作为生产的决策者,必须根据经营的目的来决定保留株数,同时,还需注意的是,土地状况和原有林分的密度是必须考虑的重要因素,土壤肥力较高的地方,若以生产顶木为主要目标,则可以适当增加保留株数,以提高出顶木数量,若以生产大径材为目的,可以减少保留株数,减少竞争。在土壤肥力较差的地方,为提高出顶木率,则应该适当减少保留株数。
- (3) 定株使桩的保活率减少,特别是保留单株,风害是保存率减少的主要原因,因此,在台风活动频繁的地区,不保留单株。
- (4) 保留株数对萌芽条生长的影响,主要是影响胸径的生长,伴随对高的影响,从而极其显著地影响单株材积。对比造林密度对林分生长的影响结果,留条对高生长的影响要明显,究其原因,因为多个萌条生长在同一桩上对养分和空间的竞争更加激烈所致,有资料^[10 13]表明,养分条件的改善和密度的减小都能明显促进桉树的高、径生长。

(5) 本研究仅就 5.5 a 生尾叶桉实生林砍伐后保留株数对其萌芽林生长的影响进行探讨,至于分化较小的无性系林分,及其它杂交桉林将有待进一步研究。

参考文献:

- [1] 吴菊英,吴坤明,徐建明. 按属树种在广东省的多点比较试验[J]. 广东林业科技,1994,9(2):31 34
- [2] 徐大平,曾育田,李伟雄. 尾叶桉幼林地上部分生物量及养分循环的研究[J]. 林业科学研究, 1994, 12(6):600 605
- [3] 徐建民,白嘉雨,甘四明. 尾叶桉家系综合选择的研究[J]. 林业科学研究,1996,9(6):562 567
- [4] 张富明,袁进桂,汤树扬,等. 短轮伐期尾叶桉萌芽更新和前期生长的研究[J]. 桉树科技,1997, (2):7 12
- [5] 曾天勋译. 印度杂种桉实生林和第一次萌芽林的生长与产量比较[1]. 广东林业科技,1991,6(1):47 49
- [6] 翁启杰,郑海水,杨曾奖,等. 雷林 1 号桉在贫瘠丘陵地造林密度的研究[J]. 广东林业科技,1995,11(3):18 22
- [7] 中国科学院南京土壤研究所. 土壤理化分析[M]. 上海:上海科学技术出版社,1978
- [8] 陈少雄,杨民胜,王理平. 尾叶桉造林密度与蓄积量、抗风和材性关系研究[J]. 林业科学研究, 1998, 11(4): 435 438
- [9] 杨曾奖,徐大平,江松远. 桩径对尾叶桉萌芽更新的影响[1]. 广东林业科技, 2001, 17(4):6 9
- [10] 杨曾奖,郑海水,翁启杰. 整地施肥对尾叶桉生长效应的研究[J]. 广东林业科技,1996,12(2):10 13
- [11] 关则崧,陈建新,王明怀,等. 刚果 12 号桉优化栽培效果分析[J]. 广东林业科技,1996,12(4):28 31
- [12] Khan M.L. Tree regeneration in a distrurbed sub-tropical wet hill forest of North East India: Effect of stump diameter and height on sprouting of four tree species[J]. Forest Ecology and Management, 1986, 17(3): 199 209
- [13] 翁启杰,黄世能,郑海水. 尾叶桉造林密度试验[J]. 广东林业科技, 1993, 8(1): 32 36

The Effect of Coppice Number on Its Growth and Productivity in Second Rotation of Eucalyptus urophylla

YANG Zeng-jiang¹, XU Da-ping¹, JIANG Song-yuan², WEN Ji-xian²

- (1. The Research Institute of Tropical Forestry, CAF, Guangzhou 510520, Guangdong, China;
 - 2. Huadu Forestry Bureau of Guangdong Province, Huadu 510000, Guangdong, China)

Abstract: The impact of stem number left for each trunk on tree growth and productivity in a second rotation coppice of *Eucalyptus urophylla* was studied by cutting 5.5 years old plantation in previous rotation. The results showed that the survival rate of coppice was lower in one stem left than 2 5 stem left per trunk. The coppice with less stem or stems would have a higher increment of height, diamter and volume of indivival stem. At year 3.5, the stand volume was the highest (45.49 m³ ·ha⁻¹) in the treatment with 3 stems left per tree, followed by the treatments with 4 and 2 stems per tree are the second (44.21 m³ ·ha⁻¹) and third (42.25 m³ ·ha⁻¹) respectively. They were 131.7%, 128.0% and 123.0% of the stand volume in the control treatment (no thinning for the second rotation coppice), respectively. The pole production for construction were 174.3%, 148.6% and 155.4% of the control treatment, respectively. Therefore, it is suggested that 3 stems per tree should be left on the middle fertility site at the planting spacing 2 m ×3 m and 2 4 stems per tree should be left to second rotation coppice of *E. nuo-phylla* in south China.

Key wrods: Eucalyptus urophylla; coppice regeneration; coppice numbers; productivity